Formulation of Dielectric Composite Material from Ananas Comosus Waste for 5 GHz Microstrip Antenna

Article Preview

Abstract:

This study explores the formulation of dielectric composite material derived from Ananas comosus (pineapple) waste for 5 GHz microstrip antenna applications. Cellulose extracted from pineapple leaves was incorporated into an epoxy matrix to achieve a permittivity (εr) of 4.13. Morphological analysis revealed cellulose fiber particles averaging 1.60 μm in diameter, embedded within a composite matrix rich in carbon and oxygen. EDX analysis confirmed composition percentages of 62.07 wt.% carbon, 33.95 wt.% oxygen, and 3.98 wt.% sodium. Antenna performance evaluation demonstrated an optimal reflection coefficient, S11, of -32 dB at 5.30 GHz in simulations, meeting FCCs 5G band specifications. The three-dimensional radiation patterns from the simulations confirmed efficient power radiation, with a gain of 4.246 dBi, indicating the suitability of the dielectric composite for effective signal transmission and reception. Experimental results showed an S11 of -22 dB at 5.15 GHz, validating robust performance within the 5 GHz range. These findings underscore the potential of pineapple waste-derived composites in advancing sustainable antenna technology.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 372)

Pages:

13-19

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. J. J. Sheela, M. Logeshwaran, K. U. Kumar, M. Vamsi, and N. C. Kumar, Design of Ultra-Wideband of Rectangular Shaped Emoji Designed Microstrip Patch Antenna of 4.5GHz for Military Applications, 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2022, pp.71-75.

DOI: 10.1109/icosec54921.2022.9951893

Google Scholar

[2] T. O. Olawoye and P. Kumar, A High Gain Microstrip Patch Antenna with Slotted Ground Plane for Sub-6 GHz 5G Communications, 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), Durban, South Africa, 2020, pp.1-6.

DOI: 10.1109/icabcd49160.2020.9183820

Google Scholar

[3] A. Kaur, A. S. Dhillon, and E. Sidhu, Performance analysis of microstrip patch antenna employing Acrylic, Teflon, and Polycarbonate as low dielectric constant substrate materials, 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 2016, pp.2090-2093.

DOI: 10.1109/wispnet.2016.7566510

Google Scholar

[4] A. Aziz, M. Farhan, A. B. Sharif, U. Ijaz, and N. Safdar, A novel high permittivity ceramic-silicone composite substrate-based antenna for energy harvesting, AEU-International Journal of Electronics and Communications, 2024, 155427.

DOI: 10.1016/j.aeue.2024.155427

Google Scholar

[5] N. S. Khair, N. A. T. Yusof, Y.A. Wahab, B. S. Bari, N. I. Ayob, and M. Zolkapli, Substrate integrated waveguide (SIW) microwave sensor theory and model in characterising dielectric material: A review, Sens. Int., 2023, 100244.

DOI: 10.1016/j.sintl.2023.100244

Google Scholar

[6] N. S. Khair, N. A. T. Yusof, M. H. M. Ariff, Y. A. Wahab, and B. S. Bari, Recent advances and open challenges in RFID antenna applications, Enabling Industry 4.0 through Advances in Mechatronics: Selected Articles from iM3F 2021, Malaysia, 2022, 507-517.

DOI: 10.1007/978-981-19-2095-0_43

Google Scholar

[7] R. D. Giamasrow, A. N. Azman, N. Zainol, M. S. A. Karim, and N. A. T. Yusof, Effect of carbon composition on permittivity performance of dielectric material from agricultural waste, Materials Today: Proceedings, 2023.

DOI: 10.1016/j.matpr.2023.09.073

Google Scholar

[8] A. N. Azman, N. Mustafa, R. D. Giamasrow, N. A. T. Yusof, N. Zainol, and M. S. A. Karim, Effect of factors on dielectric properties of pineapple leaf for microwave application, Materials Today: Proceedings, 2023.

DOI: 10.1016/j.matpr.2023.10.123

Google Scholar

[9] P. Negi, A.K. Chhantyal, A.K. Dixit, S. Kumar, A. Kumar, Activated carbon derived from mango leaves as an enhanced microwave absorbing material, Sustain. Mater. Technol. 27, 2021.

DOI: 10.1016/j.susmat.2020.e00244

Google Scholar

[10] J. Kumar, I. Alam, S. P. Singh, and C. Sharma, Impact Assessment of Chemical Dose Variations on Projected Soda and Kraft Pulping of Ananas comosus Crown Waste, Waste and Biomass Valorization, 2024, 1-11.

DOI: 10.1007/s12649-024-02648-4

Google Scholar

[11] N. A. T. Yusof, R. D. Giamasrow, A. N. Azman, N. H. Aziz, N. Zainol, and M. S. Karim, Utilization of Pineapple Leaf in Fiber-Based Dielectric Composite Material and Its Elemental Composition Analyses, Progress in Electromagnetics Research M, 2023, 117.

DOI: 10.2528/pierm23040402

Google Scholar

[12] A. Balajikrishnabharathi and D. Jayabalakrishnan, Characterization of mechanical, dielectric, EMI shielding properties of abaca bract biocarbon and pineapple fiber reinforced rigid vinyl ester composite, Polymer Bulletin, 2024, 1-19.

DOI: 10.1007/s00289-024-05301-1

Google Scholar

[13] R. D. Giamasrow, N. A. T. Yusof, A. N. Azman, N. Zainol, and M. S. A. Karim, Fabrication of Cellulose Powder Dielectric Composite Material using Pineapple Leaves Fiber, Journal of Advanced Research in Applied Sciences and Engineering Technology, 38(2), 2024, 1-15.

DOI: 10.37934/araset.38.2.115

Google Scholar

[14] A. Arul Marcel Moshi, D. Ravindran, S. R. Sundara Bharathi, V. Suganthan, and G. Kennady Shaju Singh, Characterization of new natural cellulosic fibers–a comprehensive review, IOP Conference Series: Materials Science and Engineering, vol. 574, no. 1, 2019, p.01201.

DOI: 10.1088/1757-899x/574/1/012013

Google Scholar

[15] N. Hasan, N. S. M. Hussain, A. A. M. Faudzi, S. M. Shaharum, N. A. T. Yusof, N. H. Noordin, N. A. A. Mohtadzar, and M. S. A. Karim, Cured epoxy resin dielectric characterization based on accurate waveguide technique, AIP conference proceedings, 2019, Vol. 2129, 1.

DOI: 10.1063/1.5118088

Google Scholar

[16] Information on https://www.air802.com/fcc-rules-and-regulations.html

Google Scholar

[17] R. S. Uqaili, J. A. Uqaili, S. Zahra, F. B. Soomro, and A. Akbar, A study on dual band microstrip rectangular patch antenna for Wi-Fi. Proceedings of Engineering and Technology Innovation, 16, 2020, 01-12.

DOI: 10.46604/peti.2020.6266

Google Scholar

[18] N. A. T. Yusof, S. M. Shaharum, A. A. M. Faudzi, S. Khatun, M. S. A. Karim, and S. F. Hazali, Design of Ultra-Wideband (UWB) Horn Antenna for Non-destructive Fruit Quality Monitoring, Proceedings of the 10th National Technical Seminar on Underwater System Technology 2018: NUSYS'18, Springer Singapore, 2019, pp.515-521.

DOI: 10.1007/978-981-13-3708-6_45

Google Scholar