[1]
V. S. Bystrov, J. Coutinho, L. A. Avakyan, A. V. Bystrova, and E. V. Paramonova, "Piezoelectric, ferroelectric, and optoelectronic phenomena in hydroxyapatite with various defect levels," Ferroelectrics, vol. 559, no. 1, 2020.
DOI: 10.1080/00150193.2020.1722005
Google Scholar
[2]
A. Das and D. Pamu, "A comprehensive review on electrical properties of hydroxyapatite based ceramic composites," Materials Science and Engineering C, vol. 101. 2019.
DOI: 10.1016/j.msec.2019.03.077
Google Scholar
[3]
V. S. Bystrov et al., "Computational study of hydroxyapatite structures, properties and defects," J Phys D Appl Phys, vol. 48, no. 19, 2015.
DOI: 10.1088/0022-3727/48/19/195302
Google Scholar
[4]
M. J. Robles-Águila, J. A. Reyes-Avendaño, and M. E. Mendoza, "Structural analysis of metal-doped (Mn, Fe, Co, Ni, Cu, Zn) calcium hydroxyapatite synthetized by a sol-gel microwave-assisted method," Ceram Int, vol. 43, no. 15, 2017.
DOI: 10.1016/j.ceramint.2017.06.154
Google Scholar
[5]
F. Fendi, B. Abdullah, S. Suryani, A. N. Usman, and D. Tahir, "Development and application of hydroxyapatite-based scaffolds for bone tissue regeneration: A systematic literature review," Bone, vol. 183. 2024.
DOI: 10.1016/j.bone.2024.117075
Google Scholar
[6]
A. Das, P. Dobbidi, A. Bhardwaj, V. Saxena, and L. M. Pandey, "Microstructural, electrical and biological activity in Ca10(PO4)6(OH)2-Ba0.5Sr0.5TiO3 ceramic composites designed for tissue engineering applications," Sci Rep, vol. 11, no. 1, 2021.
DOI: 10.1038/s41598-021-01748-8
Google Scholar
[7]
J. G. Korvink, E. B. Rudnyi, A. Greiner, and Z. Liu, "MEMS and NEMS simulation," in MEMS: A Practical Guide of Design, Analysis, and Applications, 2006.
DOI: 10.1007/978-3-540-33655-6_3
Google Scholar
[8]
R. Guinovart-Díaz, J. Bravo-Castillero, R. Rodríguez-Ramos, F. J. Sabina, and R. Martínez-Rosado, "Overall properties of piezocomposite materials 1-3," Mater Lett, vol. 48, no. 2, 2001.
DOI: 10.1016/S0167-577X(00)00285-8
Google Scholar
[9]
R. Rodríguez-Ramos, C. A. Gandarilla-Pérez, and J. A. Otero-Hernández, "Static effective characteristics in piezoelectric composite materials," in Mathematical Methods in the Applied Sciences, 2017.
DOI: 10.1002/mma.4069
Google Scholar
[10]
R. Kar-Gupta and T. A. Venkatesh, "Electromechanical response of 1-3 piezoelectric composites: Effect of poling characteristics," J Appl Phys, vol. 98, no. 5, 2005.
DOI: 10.1063/1.2014933
Google Scholar
[11]
S. A. M. Tofail, D. Haverty, K. T. Stanton, and J. B. McMonagle, "Structural order and dielectric behaviour of hydroxyapatite," Ferroelectrics, vol. 319, 2005.
DOI: 10.1080/00150190590965523
Google Scholar
[12]
I. Urbanaviciute et al., "Negative piezoelectric effect in an organic supramolecular ferroelectric," Mater Horiz, vol. 6, no. 8, 2019.
DOI: 10.1039/c9mh00094a
Google Scholar
[13]
J. Gao, D. Xue, W. Liu, C. Zhou, and X. Ren, "Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications," Actuators, vol. 6, no. 3. 2017.
DOI: 10.3390/act6030024
Google Scholar
[14]
B. Altun, I. Demirkan, E. O. Isik, O. Kocaturk, M. B. Unlu, and B. Garipcan, "Acoustic impedance measurement of tissue mimicking materials by using scanning acoustic microscopy," Ultrasonics, vol. 110, 2021.
DOI: 10.1016/j.ultras.2020.106274
Google Scholar