Electro-Elastic Behavior of Polarized Hydroxyapatite and Barium Titanate Piezocomposite

Article Preview

Abstract:

This study investigates the piezoelectric properties of a composite comprising polar hydroxyapatite (HA) and BaTiO3 using an analytical model. The analysis covers the piezoelectric coefficients d33 ​and d31, and the specific acoustic impedance. The findings reveal that HA exhibits an unconventional d33​ behavior, while the composite demonstrates a decrease in d31​ and an increase in d33​, with minimal BaTiO3 content achieving d33 values similar to those of human bone (< 1 pC/N). Additionally, the d31 coefficient of HA showed an unconventional behavior, highlighting its potential usage in the transverse direction. The impedance also increases from 23.5 MRayls to 31.5 MRayls, which improves acoustic wave transmission for medical imaging and therapeutic devices. These results highlight the composite's promise for bone regeneration, implantable ultrasound transducers, and energy harvesting applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 372)

Pages:

57-62

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. S. Bystrov, J. Coutinho, L. A. Avakyan, A. V. Bystrova, and E. V. Paramonova, "Piezoelectric, ferroelectric, and optoelectronic phenomena in hydroxyapatite with various defect levels," Ferroelectrics, vol. 559, no. 1, 2020.

DOI: 10.1080/00150193.2020.1722005

Google Scholar

[2] A. Das and D. Pamu, "A comprehensive review on electrical properties of hydroxyapatite based ceramic composites," Materials Science and Engineering C, vol. 101. 2019.

DOI: 10.1016/j.msec.2019.03.077

Google Scholar

[3] V. S. Bystrov et al., "Computational study of hydroxyapatite structures, properties and defects," J Phys D Appl Phys, vol. 48, no. 19, 2015.

DOI: 10.1088/0022-3727/48/19/195302

Google Scholar

[4] M. J. Robles-Águila, J. A. Reyes-Avendaño, and M. E. Mendoza, "Structural analysis of metal-doped (Mn, Fe, Co, Ni, Cu, Zn) calcium hydroxyapatite synthetized by a sol-gel microwave-assisted method," Ceram Int, vol. 43, no. 15, 2017.

DOI: 10.1016/j.ceramint.2017.06.154

Google Scholar

[5] F. Fendi, B. Abdullah, S. Suryani, A. N. Usman, and D. Tahir, "Development and application of hydroxyapatite-based scaffolds for bone tissue regeneration: A systematic literature review," Bone, vol. 183. 2024.

DOI: 10.1016/j.bone.2024.117075

Google Scholar

[6] A. Das, P. Dobbidi, A. Bhardwaj, V. Saxena, and L. M. Pandey, "Microstructural, electrical and biological activity in Ca10(PO4)6(OH)2-Ba0.5Sr0.5TiO3 ceramic composites designed for tissue engineering applications," Sci Rep, vol. 11, no. 1, 2021.

DOI: 10.1038/s41598-021-01748-8

Google Scholar

[7] J. G. Korvink, E. B. Rudnyi, A. Greiner, and Z. Liu, "MEMS and NEMS simulation," in MEMS: A Practical Guide of Design, Analysis, and Applications, 2006.

DOI: 10.1007/978-3-540-33655-6_3

Google Scholar

[8] R. Guinovart-Díaz, J. Bravo-Castillero, R. Rodríguez-Ramos, F. J. Sabina, and R. Martínez-Rosado, "Overall properties of piezocomposite materials 1-3," Mater Lett, vol. 48, no. 2, 2001.

DOI: 10.1016/S0167-577X(00)00285-8

Google Scholar

[9] R. Rodríguez-Ramos, C. A. Gandarilla-Pérez, and J. A. Otero-Hernández, "Static effective characteristics in piezoelectric composite materials," in Mathematical Methods in the Applied Sciences, 2017.

DOI: 10.1002/mma.4069

Google Scholar

[10] R. Kar-Gupta and T. A. Venkatesh, "Electromechanical response of 1-3 piezoelectric composites: Effect of poling characteristics," J Appl Phys, vol. 98, no. 5, 2005.

DOI: 10.1063/1.2014933

Google Scholar

[11] S. A. M. Tofail, D. Haverty, K. T. Stanton, and J. B. McMonagle, "Structural order and dielectric behaviour of hydroxyapatite," Ferroelectrics, vol. 319, 2005.

DOI: 10.1080/00150190590965523

Google Scholar

[12] I. Urbanaviciute et al., "Negative piezoelectric effect in an organic supramolecular ferroelectric," Mater Horiz, vol. 6, no. 8, 2019.

DOI: 10.1039/c9mh00094a

Google Scholar

[13] J. Gao, D. Xue, W. Liu, C. Zhou, and X. Ren, "Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications," Actuators, vol. 6, no. 3. 2017.

DOI: 10.3390/act6030024

Google Scholar

[14] B. Altun, I. Demirkan, E. O. Isik, O. Kocaturk, M. B. Unlu, and B. Garipcan, "Acoustic impedance measurement of tissue mimicking materials by using scanning acoustic microscopy," Ultrasonics, vol. 110, 2021.

DOI: 10.1016/j.ultras.2020.106274

Google Scholar