Microcrystalline Cellulose Derived from Pineapple Leaf and its Concentration Effect on Polycaprolactone-Based Composite

Article Preview

Abstract:

Pineapple leaf is a significant agricultural waste in pineapple processing plants. The leaf comprises several carbohydrate polymers, including cellulose, hemicellulose and lignin. This research investigated the use of microcrystalline cellulose (MCC) extracted from pineapple leaves as a reinforcing agent in polycaprolactone (PCL) biopolymer at various MCC concentrations. MCC was extracted from pineapple leaves through several processes, including alkali treatment with sodium hydroxide (NaOH), bleaching with sodium hypochlorite (NaOCl), and acid hydrolysis with oxalic acid. Fourier transform infrared (FTIR) spectroscopy confirmed the presence of cellulose from the extracted MCC, and field emission scanning electron microscopy (FESEM) analysis revealed that the particles are of micro-size. The tensile testing results show that the elastic modulus of PCL-based biocomposite increases with higher MCC concentrations. The stiffness of the biocomposites increased by up to 9.5% with the addition of 2 wt.% of MCC as a reinforcing filler, indicating that MCC effectively enhances the mechanical properties of the biocomposite.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 372)

Pages:

69-75

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.D. Okoffo, E. Donner, S.P. McGrath, B.J. Tscharke, J.W. O'Brien, S. O'Brien, F. Ribeiro, S.D. Burrows, T. Toapanta, C. Rauert, S. Samanipour, J.F. Mueller, K.V. Thomas, Water Res., Vol. 201 (2021), 117367

DOI: 10.1016/j.watres.2021.117367

Google Scholar

[2] H.L. Chen, T.K. Nath, S. Chong, V. Foo, C. Gibbins, A.M. Lechner, SN Appl. Sci., Vol. 3 (2021), 437

Google Scholar

[3] C.-S. Wu, H.-T. Liao, Ind. Eng. Chem. Res., Vol. 51 (2012), 3329-3337

Google Scholar

[4] K. Jha, Y.K. Tyagi, A. Singh Yadav, Sādhanā, Vol. 43 (2018), 135

Google Scholar

[5] Q. Zhang, H. Lei, H. Cai, X. Han, X. Lin, M. Qian, Y. Zhao, E. Huo, E.M. Villota, W. Mateo, J. Clean. Prod., Vol. 252 (2020), 119898

Google Scholar

[6] M.K.M. Haafiz, A. Hassan, Z. Zakaria, I.M. Inuwa, M.S. Islam, M. Jawaid, Carborhydr. Polym., Vol. 98 (2013), 139-145

Google Scholar

[7] A.P. Mathew, K. Oksman, M. Sain, J. Appl. Polym. Sci., Vol. 97 (2005), 2014-2025

Google Scholar

[8] D. Trache, M.H. Hussin, C.T. Hui Chuin, S. Sabar, M.R.N. Fazita, O.F.A. Taiwo, T.M. Hassan, M.K.M. Haafiz, Int. J. Biol. Macromol., Vol. 93 (2016), 789-804

DOI: 10.1016/j.ijbiomac.2016.09.056

Google Scholar

[9] D. Trache, A.F. Tarchoun, M. Derradji, T.S. Hamidon, N. Masruchin, N. Brosse, M.H. Hussin, Frontiers in Chemistry, Vol. 8 (2020), 392

DOI: 10.3389/fchem.2020.00392

Google Scholar

[10] T. Zhao, Z. Chen, X. Lin, Z. Ren, B. Li, Y. Zhang, Carborhydr. Polym., Vol. 184 (2018), 164-170

Google Scholar

[11] Y. Liu, A. Liu, S.A. Ibrahim, H. Yang, W. Huang, Int. J. Biol. Macromol., Vol. 111 (2018), 717-721

Google Scholar

[12] P. Penjumras, R.B.A. Rahman, R.A. Talib, K. Abdan, Agric. Agric. Sci. Procedia., Vol. 2 (2014), 237-243

Google Scholar

[13] W.R. Kunusa, I. Isa, L.A. Laliyo, H. Iyabu, J. Phys. Conf. Ser., Vol. 1028 (2018), 012199

DOI: 10.1088/1742-6596/1028/1/012199

Google Scholar

[14] F. Fitriani, S. Aprilia, N. Arahman, M.R. Bilad, A. Amin, N. Huda, J. Roslan, Polymers, Vol. 13 (2021), 4188

DOI: 10.3390/polym13234188

Google Scholar

[15] M.H. Sainorudin, N.A. Abdullah, M.S. Asmal Rani, M. Mohammad, M. Mahizan, N. Shadan, N.H. Abd Kadir, Z. Yaakob, A. El-Denglawey, M. Alam, Nanotechnol. Rev., Vol. 10 (2021), 793-806

DOI: 10.1515/ntrev-2021-0053

Google Scholar

[16] P. Sinsukudomchai, D. Aht-Ong, K. Honda, S.C. Napathorn, Plos one, Vol. 18 (2023), e0282311

DOI: 10.1371/journal.pone.0282311

Google Scholar

[17] "ASTM D3039/D3039M Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials," ASTM International, (2017)

Google Scholar

[18] D.A. Akbar, Kusmono, M.W. Wildan, M.N. Ilman, Key Eng. Mater., Vol. 867 (2020), 109-116

Google Scholar

[19] S. Ventura-Cruz, N. Flores-Alamo, A. Tecante, Int. J. Biol. Macromol., Vol. 155 (2020), 324-329

Google Scholar

[20] X. Sun, F. Xu, R. Sun, P. Fowler, M. Baird, Carbohydr. Res., Vol. 340 (2005), 97-106

Google Scholar

[21] O.T. Abdulwahab, A. Ghazali, H.A. Khalil, A. Hassan, R. Arjmandi, M.N. Fazita, M.M. Haafiz, Wood Fiber Sci., Vol. 48 (2016), 260-270

Google Scholar

[22] R.K. Punnadiyil, M. Sreejith, E. Purushothaman, J. Chem. Pharm. Sci, Vol. 974 (2016), 2115

Google Scholar

[23] A. Vertanessian, A. Allen, M.J. Mayo, J. Mater. Res., Vol. 18 (2003), 495-506

Google Scholar

[24] E. Indarti, M. Abakar, W.R. Wan Daud, J. Phys. Conf. Ser., Vol. 622 (2015)

Google Scholar

[25] J. Shojaeiarani, D.S. Bajwa, S. Chanda, Compos. C: Open Access, Vol. 5 (2021), 100164

Google Scholar

[26] B.L. Peng, N. Dhar, H. Liu, K. Tam, Can. J. Chem. Eng., Vol. 89 (2011), 1191-1206

Google Scholar

[27] E.G. Kim, B.S. Kim, D.S. Kim, J. Appl. Polym. Sci., Vol. 103 (2007), 928-934

Google Scholar

[28] A. Dufresne, Materials today, Vol. 16 (2013), 220-227

Google Scholar

[29] N. Narayanan, L. Kuang, M. Del Ponte, C. Chain, M. Deng, in: Nanocomposites for Musculoskeletal Tissue Regeneration, edited by H. Liu, Woodhead Publishing (2016).

DOI: 10.1016/b978-1-78242-452-9.00001-7

Google Scholar

[30] E.S. Abdul Rashid, N.B. Muhd Julkapli, W. Abdul Hadi Yehya, J. Appl. Polym. Sci., Vol. 135 (2018), 46594

DOI: 10.1002/app.46594

Google Scholar

[31] A. Kaboorani, B. Riedl, P. Blanchet, M. Fellin, O. Hosseinaei, S. Wang, Eur. Polym. J., Vol. 48 (2012), 1829-1837

DOI: 10.1016/j.eurpolymj.2012.08.008

Google Scholar