Backgrounds of an Innovative Approach to Grow Thin Films: General Considerations

Article Preview

Abstract:

An innovative method of obtaining thin films of semiconductors and other materials, which is based on the differences in components solubility, density, and atomic mass, is developed. Process of producing a thin film of a substance A starts by choosing of another component – substance B that may form a two-component A–B solid solution. Then, it has to be selected third component – substance C that must dissolve substance B well, but A does not. The selection of the composition and conditions of application of the chemical etching process ensure the removal of C and B dissolved in it from the surface of A. The method provides both low- and high-temperature processes. The proposed new principle of obtaining thin films would be attractive due to their reduced size, tunable properties, proper adhesion, preservation of high reliability, possibility of further miniaturization in electronics, and cost reduction.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 377)

Pages:

105-110

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.B. Bergmann, J.H. Werner, The future of crystalline silicon films on foreign substrates, Thin Solid Films, 403/404 (2002) 162-169.

DOI: 10.1016/s0040-6090(01)01556-5

Google Scholar

[2] G. Korotcenkov, Thin metal films, in: Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications, Vol. 1: Conventional Approaches, Integrated Analytical Systems, Springer, New York (2013) Ch. 4, 153-166.

DOI: 10.1007/978-1-4614-7165-3_4

Google Scholar

[3] J.E. Greene, Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017, J. Vac. Sci. Technol. A 35 (2017) 05C204 (1-60).

DOI: 10.1116/1.4998940

Google Scholar

[4] H. Nagai, M. Sato, Molecular precursor method for fabricating p-type Cu2O and metallic Cu thin films, in: Modern Technologies for Creating the Thin-film Systems and Coatings, N.N. Nikitenkov (ed.), IntechOpen (2017) Ch. 1, 3-20.

DOI: 10.5772/66476

Google Scholar

[5] M. Benelmekki, A. Erbe, Chapter 1 – Nanostructured thin films – Background, preparation and relation to the technological revolution of the 21st century, Front. Nanosci. 14 (2019) 1-34.

DOI: 10.1016/b978-0-08-102572-7.00001-5

Google Scholar

[6] S. Kumar, D.K. Aswal, Thin film and significance of its thickness, in: Recent Advances in Thin Films, S. Kumar, D.K. Aswal (eds.), Springer, Singapore (2020) 1-12.

DOI: 10.1007/978-981-15-6116-0_1

Google Scholar

[7] Ph.N. Hishimone, H. Nagai, M. Sato, Methods of fabricating thin films for energy materials and devices, in: Lithium-Ion Batteries – Thin Film for Energy Materials and Devices, M. Sato, L. Lu, H. Nagai (eds.), IntechOpen (2020) Ch. 2, 1-21.

DOI: 10.5772/intechopen.85912

Google Scholar

[8] M.I. Hossain and S.A. Mansour, Critical overview of thin films coating technologies for energy applications, Cogent Eng. 10 (2023) 2179467 (1-18).

DOI: 10.1080/23311916.2023.2179467

Google Scholar

[9] Z. Benzarti, A. Khalfallah, Recent Advances in the development of thin films, Coatings 14 (2024) 878 (1-4).

DOI: 10.3390/coatings14070878

Google Scholar

[10] A.R. Smith, M. Ghamari, S. Velusamy, S. Sundaram, Thin-film technologies for sustainable building-integrated photovoltaics, Energies 17 (2024) 6363 (1-39).

DOI: 10.3390/en17246363

Google Scholar

[11] K. Ishraque, N.M. Ashikul Haque, A. Ahmed, S. Md. Abdus, A. Aninda, Effect of silver and cobalt on transparent conducting CdO thin films: Tuning the optoelectronic properties, Mater. Adv. 6 (2024) 703-718.

DOI: 10.1039/d4ma00918e/v2/response1

Google Scholar

[12] P.J. Perez–Diaz, Y. Esqueda–Barron, J.M. Baas–Lopez, A.K. Cuentas–Gallegos, D.E. Pacheco–Catalan, Synthesis of manganese oxide thin films deposited on different substrates via atmospheric pressure-CVD, Surf. Coat. Technol., 494-2 (2024) 131440 (1-5).

DOI: 10.1016/j.surfcoat.2024.131440

Google Scholar

[13] F.T. Mahi, K. Nakajima, Liquid phase epitaxy, Ref. Module Mater. Sci. Mater. Eng. https://doi.org/10.1016/B978-0-12-803581-8.03677-8 (2016) 1-10.

Google Scholar

[14] H. Sitter, A. Andreev, G. Matt, N.S. Sariciftci, Hot-wall-epitaxy – The method of choice for the growth of highly ordered organic epilayers, Mol. Cryst. Liquid Cryst. 385 (2002) 51-60.

DOI: 10.1080/713738791

Google Scholar

[15] M.C. Rao, M.S. Shekhawat, A brief survey on basic properties of thin films for device application, Int. J. Mod. Phys. Conf. Ser. 22 (2013) 576-582.

DOI: 10.1142/s2010194513010696

Google Scholar

[16] K. Bourzac, Japan gambles on displays, Nature 484 (2012) 301-301.

DOI: 10.1038/484301a

Google Scholar

[17] K. Mukhopadhyay, A.K. Chakroborty, A.P. Chatterjee, S.K. Lahiri, Galvanostatic deposition and electrical characterization of cuprous oxide thin films, Thin Solid Films 209 (1992) 92-96.

DOI: 10.1016/0040-6090(92)90015-4

Google Scholar

[18] K.P. Muthe, J.C. Vyas, S.N. Narang, D.K. Aswal, S.K. Gupta, D. Bhattacharya, R. Pinto, G.P. Kothiyal, S.B. Sabharwal, A study of the CuO phase formation during thin film deposition by molecular beam epitaxy, Thin Solid Films 324 (1998) 37-43.

DOI: 10.1016/s0040-6090(97)01203-0

Google Scholar

[19] S. Izhizuka, S. Kato, T. Maruyama, K. Akimoto, Nitrogen doping into Cu2O thin films deposited by reactive radio-frequency magnetron sputtering, Japanese J. Appl. Phys. 40 (2001) 2765-2768.

DOI: 10.1143/jjap.40.2765

Google Scholar

[20] S. Joseph, P.V. Kamath, Electrochemical deposition of Cu2O on stainless steel substrates: Promotion and suppression of oriented crystallization, Solid State Sci. 10 (2008) 1215-1221.

DOI: 10.1016/j.solidstatesciences.2007.11.007

Google Scholar

[21] E. Khutsishvili, T. Qamushadze, G. Goderdzishvili, Silicon from Rocks to Electronics, Favorite Style, Tbilisi (2023).

Google Scholar

[22] F.A. Trumbore, Solid solubilities of impurity elements in germanium and silicon, Bell Syst. Tech. J., 39 (1960) 205-233.

DOI: 10.1002/j.1538-7305.1960.tb03928.x

Google Scholar

[23] R.W. Olesinki, N. Kanani, G.J. Abbaschian, The Ge–In (germanium–indium) system, Bull. Alloy Phase Diag. 6 (1985) 536-539.

DOI: 10.1007/bf02887153

Google Scholar

[24] A. Sato, K. Suzuki, H. Horie, T. Sugii, Determination of solid solubility limit of In and Sb in Si using bonded silicon-on-insulator (SoI) substrate, in: Proc. IEEE Int. Conf. Microelectr. Test Str., 8 (1995) 259-263.

DOI: 10.1109/icmts.1995.513984

Google Scholar