A Short Review of Environmentally Friendly Spacer Coatings to Minimize Membrane Fouling

Article Preview

Abstract:

Desalination plays a crucial role in addressing global water scarcity by providing a reliable source of freshwater from seawater and brackish water, supporting both human consumption and industrial needs. Feed spacers are an essential component of membrane systems, enhancing mixing and mass transfer. However, they also facilitate foulant deposition, with biofouling often initiating on the spacer surface before spreading to the membrane. Biofouling poses a significant challenge as it is difficult to remove once occurred. In response, extensive research has explored modifying feed spacer surfaces to mitigate fouling. Despite advancements, the use of hazardous chemical reagents in conventional spacer coatings raises serious environmental concerns, including contamination of the food chain and potential risks to human health. This review focuses on eco-friendly spacer coating strategies for biofouling resistance, emphasizing sustainable methods to address the environmental impacts of traditional approaches. Techniques such as plasma pretreatment, direct coating, oil-infused coatings, and candle-soot coatings have shown potential in reducing biofouling by modifying surface properties, including hydrophilicity, hydrophobicity, and biocidal characteristics. These methods have proven effective in mitigating membrane fouling, thereby improving the performance and lifespan of membrane systems. Finally, the paper outlines future research directions, including experimental and numerical approaches, to enhance spacer coatings for antifouling in membrane applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 377)

Pages:

55-64

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Salehi, Global water shortage and potable water safety; Today's concern and tomorrow's crisis, Environ Int 158 (2022) 106936.

DOI: 10.1016/j.envint.2021.106936

Google Scholar

[2] G. Amy, N. Ghaffour, Z. Li, L. Francis, R.V. Linares, T. Missimer, S. Lattemann, Membrane-based seawater desalination: Present and future prospects, Desalination 401 (2017) 16-21.

DOI: 10.1016/j.desal.2016.10.002

Google Scholar

[3] M. Ayaz, M.A. Namazi, M.A.u. Din, M.I.M. Ershath, A. Mansour, e.-H.M. Aggoune, Sustainable seawater desalination: Current status, environmental implications and future expectations, Desalination 540 (2022).

DOI: 10.1016/j.desal.2022.116022

Google Scholar

[4] W. Lin, Y. Zhang, D. Li, X.M. Wang, X. Huang, Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: A 20-year review on research evolvement, Water Res. 198 (2021) 117146.

DOI: 10.1016/j.watres.2021.117146

Google Scholar

[5] J. Schwinge, P.R. Neal, D.E. Wiley, D.F. Fletcher, A.G. Fane, Spiral wound modules and spacers, Journal of Membrane Science 242(1-2) (2004) 129-153.

DOI: 10.1016/j.memsci.2003.09.031

Google Scholar

[6] N. Niknafs, A. Jalali, Performance analysis of cross-flow forward osmosis membrane modules with mesh feed spacer using three-dimensional computational fluid dynamics simulations, Chemical Engineering and Processing - Process Intensification 168 (2021) 108583.

DOI: 10.1016/j.cep.2021.108583

Google Scholar

[7] Y.Y. Liang, G.A. Fimbres Weihs, D.F. Fletcher, CFD study of the effect of unsteady slip velocity waveform on shear stress in membrane systems, Chem. Eng. Sci. 192 (2018) 16-24.

DOI: 10.1016/j.ces.2018.07.009

Google Scholar

[8] S.S. Bucs, N. Farhat, J.C. Kruithof, C. Picioreanu, M.C.M. van Loosdrecht, J.S. Vrouwenvelder, Review on strategies for biofouling mitigation in spiral wound membrane systems, Desalination 434 (2018) 189-197.

DOI: 10.1016/j.desal.2018.01.023

Google Scholar

[9] K. Ren, Z. Jiao, X. Wu, H. Han, Multivariable identification of membrane fouling based on compacted cascade neural network, Chin. J. Chem. Eng. 53 (2023) 37-45.

DOI: 10.1016/j.cjche.2022.01.028

Google Scholar

[10] J.S. Vrouwenvelder, S.A. Manolarakis, J.P. van der Hoek, J.A. van Paassen, W.G. van der Meer, J.M. van Agtmaal, H.D. Prummel, J.C. Kruithof, M.C. van Loosdrecht, Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations, Water Res. 42(19) (2008) 4856-68.

DOI: 10.1016/j.watres.2008.09.002

Google Scholar

[11] Y.S. Khoo, N.S.M. Nawi, Y.Y. Liang, L.K. Sim, W.J. Lau, C. Thamaraiselvan, Surface modification of NF membrane via an environmentally friendly and rapid approach for desalination Process: Performance and stability evaluation, Sep. Purif. Technol. 329 (2024).

DOI: 10.1016/j.seppur.2023.125119

Google Scholar

[12] R. Hausman, I.C. Escobar, A comparison of silver‐ and copper‐charged polypropylene feed spacers for biofouling control, J. Appl. Polym. Sci. 128(3) (2012) 1706-1714.

DOI: 10.1002/app.38164

Google Scholar

[13] V. Kochkodan, N. Hilal, A comprehensive review on surface modified polymer membranes for biofouling mitigation, Desalination 356 (2015) 187-207.

DOI: 10.1016/j.desal.2014.09.015

Google Scholar

[14] T. Simovich, A. Rosenhahn, R.N. Lamb, Thermoregeneration of Plastrons on Superhydrophobic Coatings for Sustained Antifouling Properties, Adv. Eng. Mater. 22(3) (2019).

DOI: 10.1002/adem.201900806

Google Scholar

[15] S. Yang, W. Shang, R. Yang, H. Shi, H. Zeng, D. Xing, F. Sun, X. Xiong, Synergistically controlling biofouling and improving membrane module permeability by using simultaneously structurally optimized and surface modified feed spacers, Journal of Membrane Science 708 (2024).

DOI: 10.1016/j.memsci.2024.123046

Google Scholar

[16] N.M.A. Omar, M.H.D. Othman, Z.S. Tai, M.F. Rabuni, A.O.A. Amhamed, M.H. Puteh, J. Jaafar, M.A. Rahman, T.A. Kurniawan, Overcoming challenges in water purification by nanocomposite ceramic membranes: A review of limitations and technical solutions, Journal of Water Process Engineering 57 (2024).

DOI: 10.1016/j.jwpe.2023.104613

Google Scholar

[17] P.A. Araújo, D.J. Miller, P.B. Correia, M.C.M. van Loosdrecht, J.C. Kruithof, B.D. Freeman, D.R. Paul, J.S. Vrouwenvelder, Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control, Desalination 295 (2012) 1-10.

DOI: 10.1016/j.desal.2012.02.026

Google Scholar

[18] A. Ronen, S. Lerman, G.Z. Ramon, C.G. Dosoretz, Experimental characterization and numerical simulation of the anti-biofuling activity of nanosilver-modified feed spacers in membrane filtration, Journal of Membrane Science 475 (2015) 320-329.

DOI: 10.1016/j.memsci.2014.10.042

Google Scholar

[19] T. Natalia, M. Tatiana, S. Kolesnikov, T. Minkina, Pollution of silver and silver nanoparticles in the ecosystems and their interactions with plants and soil microbiota, Emerging Contaminants2024, pp.267-290.

DOI: 10.1016/b978-0-443-18985-2.00008-0

Google Scholar

[20] K. Elsaid, M. Kamil, E.T. Sayed, M.A. Abdelkareem, T. Wilberforce, A. Olabi, Environmental impact of desalination technologies: A review, Sci. Total Environ. 748 (2020) 141528.

DOI: 10.1016/j.scitotenv.2020.141528

Google Scholar

[21] I. Ihsanullah, M.A. Atieh, M. Sajid, M.K. Nazal, Desalination and environment: A critical analysis of impacts, mitigation strategies, and greener desalination technologies, Sci. Total Environ. 780 (2021) 146585.

DOI: 10.1016/j.scitotenv.2021.146585

Google Scholar

[22] M. Rehman, L. Liu, Q. Wang, M.H. Saleem, S. Bashir, S. Ullah, D. Peng, Copper environmental toxicology, recent advances, and future outlook: a review, Environ Sci Pollut Res Int 26(18) (2019) 18003-18016.

DOI: 10.1007/s11356-019-05073-6

Google Scholar

[23] E.F. Mandell, 1974, Water Res. 9 (The effects of desalination brines on Crassostrea virginica (Gmelin)) 287-295.

DOI: 10.1016/0043-1354(75)90050-0

Google Scholar

[24] F. Li, R. Li, F. Lu, L. Xu, L. Gan, W. Chu, M. Yan, H. Gong, Adverse effects of silver nanoparticles on aquatic plants and zooplankton: A review, Chemosphere 338 (2023) 139459.

DOI: 10.1016/j.chemosphere.2023.139459

Google Scholar

[25] A. Panagopoulos, K.J. Haralambous, Environmental impacts of desalination and brine treatment - Challenges and mitigation measures, Mar. Pollut. Bull. 161(Pt B) (2020) 111773.

DOI: 10.1016/j.marpolbul.2020.111773

Google Scholar

[26] M. Rizwan, S. Ali, M. Adrees, H. Rizvi, M. Zia-Ur-Rehman, F. Hannan, M.F. Qayyum, F. Hafeez, Y.S. Ok, Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review, Environ Sci Pollut Res Int 23(18) (2016) 17859-79.

DOI: 10.1007/s11356-016-6436-4

Google Scholar

[27] P. Chan, M. Kurisawa, J.E. Chung, Y.Y. Yang, Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery, Biomaterials 28(3) (2007) 540-9.

DOI: 10.1016/j.biomaterials.2006.08.046

Google Scholar

[28] K. Bazaka, M.V. Jacob, R.J. Crawford, E.P. Ivanova, Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment, Acta Biomater 7(5) (2011) 2015-28.

DOI: 10.1016/j.actbio.2010.12.024

Google Scholar

[29] S. Theapsak, A. Watthanaphanit, R. Rujiravanit, Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment, ACS Appl Mater Interfaces 4(5) (2012) 2474-82.

DOI: 10.1021/am300168a

Google Scholar

[30] Z. Li, J. Meng, W. Wang, Z. Wang, M. Li, T. Chen, C.J. Liu, The room temperature electron reduction for the preparation of silver nanoparticles on cotton with high antimicrobial activity, Carbohydr. Polym. 161 (2017) 270-276.

DOI: 10.1016/j.carbpol.2017.01.020

Google Scholar

[31] J.M. Vaz, T.B. Taketa, J. Hernandez-Montelongo, P. Chevallier, M.A. Cotta, D. Mantovani, M.M. Beppu, Antibacterial properties of chitosan-based coatings are affected by spacer-length and molecular weight, Appl. Surf. Sci. 445 (2018) 478-487.

DOI: 10.1016/j.apsusc.2018.03.110

Google Scholar

[32] Y. Wibisono, W. Yandi, M. Golabi, R. Nugraha, E.R. Cornelissen, A.J. Kemperman, T. Ederth, K. Nijmeijer, Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: a novel platform for eco-friendly biofouling mitigation, Water Res. 71 (2015) 171-86.

DOI: 10.1016/j.watres.2014.12.030

Google Scholar

[33] K.T. Huisman, M.H. Abdellah, D.S. Alvarez Sosa, F.R. Fernandes Simoes, B. Blankert, J.S. Vrouwenvelder, G. Szekely, Improved cleaning performance of membrane modules using feed spacers modified with cold-plasma treatment and polydopamine and silver-nanoparticle coatings, Desalination 582 (2024).

DOI: 10.1016/j.desal.2024.117604

Google Scholar

[34] C. Zhang, J. Jin, J. Zhao, W. Jiang, J. Yin, Functionalized polypropylene non-woven fabric membrane with bovine serum albumin and its hemocompatibility enhancement, Colloids Surf B Biointerfaces 102 (2013) 45-52.

DOI: 10.1016/j.colsurfb.2012.08.007

Google Scholar

[35] Y.S. Khoo, W.J. Lau, Y.Y. Liang, M. Karaman, M. Gürsoy, A.F. Ismail, A green approach to modify surface properties of polyamide thin film composite membrane for improved antifouling resistance, Sep. Purif. Technol. 250 (2020).

DOI: 10.1016/j.seppur.2020.116976

Google Scholar

[36] K. Reid, M. Dixon, C. Pelekani, K. Jarvis, M. Willis, Y. Yu, Biofouling control by hydrophilic surface modification of polypropylene feed spacers by plasma polymerisation, Desalination 335(1) (2014) 108-118.

DOI: 10.1016/j.desal.2013.12.017

Google Scholar

[37] J. Mansouri, S. Harrisson, V. Chen, Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities, J. Mater. Chem. 20(22) (2010).

DOI: 10.1039/b926440j

Google Scholar

[38] L. Zou, I. Vidalis, D. Steele, A. Michelmore, S.P. Low, J.Q.J.C. Verberk, Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling, Journal of Membrane Science 369(1-2) (2011) 420-428.

DOI: 10.1016/j.memsci.2010.12.023

Google Scholar

[39] J. Friedrich, Mechanisms of Plasma Polymerization – Reviewed from a Chemical Point of View, Plasma Processes and Polymers 8(9) (2011) 783-802.

DOI: 10.1002/ppap.201100038

Google Scholar

[40] C.J. Bettinger, Z. Bao, Biomaterials-Based Organic Electronic Devices, Polym. Int. 59(5) (2010) 563-567.

DOI: 10.1002/pi.2827

Google Scholar

[41] C. Park, J.-O. Kim, Performance of biofouling mitigating feed spacer by surface modification using quorum sensing inhibitor, Desalination 538 (2022). https://doi.org/10.1016/j.desal. 2022.115904.

DOI: 10.1016/j.desal.2022.115904

Google Scholar

[42] X. Wang, S. Li, P. Chen, F. Li, X. Hu, T. Hua, Photocatalytic and antifouling properties of TiO2-based photocatalytic membranes, Materials Today Chemistry 23 (2022).

DOI: 10.1016/j.mtchem.2021.100650

Google Scholar

[43] T.E. Agustina, H.M. Ang, V.K. Vareek, A review of synergistic effect of photocatalysis and ozonation on wastewater treatment, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 6(4) (2005) 264-273.

DOI: 10.1016/j.jphotochemrev.2005.12.003

Google Scholar

[44] L. Xiong, J. Tang, Strategies and Challenges on Selectivity of Photocatalytic Oxidation of Organic Substances, Advanced Energy Materials 11(8) (2021). https://doi.org/10.1002/aenm. 202003216.

DOI: 10.1002/aenm.202003216

Google Scholar

[45] N. Sreedhar, M. Kumar, S. Al Jitan, N. Thomas, G. Palmisano, H.A. Arafat, 3D printed photocatalytic feed spacers functionalized with β-FeOOH nanorods inducing pollutant degradation and membrane cleaning capabilities in water treatment, Applied Catalysis B: Environmental 300 (2022).

DOI: 10.1016/j.apcatb.2021.120318

Google Scholar

[46] A. Ronen, R. Semiat, C.G. Dosoretz, Impact of ZnO embedded feed spacer on biofilm development in membrane systems, Water Res. 47(17) (2013) 6628-38.

DOI: 10.1016/j.watres.2013.08.036

Google Scholar

[47] A. Ronen, R. Semiat, C.G. Dosoretz, Antibacterial Efficiency of a Composite Spacer Containing Zinc Oxide Nanoparticles, Procedia Engineering 44 (2012) 581-582.

DOI: 10.1016/j.proeng.2012.08.491

Google Scholar

[48] A. Ronen, R. Semiat, C.G. Dosoretz, Antibacterial efficiency of composite nano-ZnO in biofilm development in flow-through systems, Desalination and Water Treatment 51(4-6) (2013) 988-996.

DOI: 10.1080/19443994.2012.693698

Google Scholar

[49] A. Boyko, J.A. Epstein, G.Z. Ramon, Oil-infused feed spacers for biofouling inhibition, Desalination 573 (2024).

DOI: 10.1016/j.desal.2023.117210

Google Scholar

[50] C. Thamaraiselvan, E. Manderfeld, M.N. Kleinberg, A. Rosenhahn, C.J. Arnusch, Superhydrophobic Candle Soot as a Low Fouling Stable Coating on Water Treatment Membrane Feed Spacers, ACS Appl Bio Mater 4(5) (2021) 4191-4200.

DOI: 10.1021/acsabm.0c01677

Google Scholar