[1]
A. Iron, "Role of Stainless Steel In Petroleum Refining a Designers' Handbook series," Nickel Inst., 2020.
Google Scholar
[2]
ASTM G1-90, "ASTM G1 Standard Practice for Preparing, Cleaning, and Evaluation Corrosion Test Specimen" Astm, p.8, 1999, [Online]. Available: https://www.astm.org/DATABASE.CART/HISTORICAL/G1-03R11.htm
DOI: 10.1520/mnl65201211106
Google Scholar
[3]
A. Toloei, V. Stoilov, and D. Northwood, "The relationship between surface roughness and corrosion, " ASME Int. Mech. Eng. Congr. Expo. Proc., vol. 2 B, p.1–10, 2013.
DOI: 10.1115/IMECE2013-65498
Google Scholar
[4]
E. H. Phelps and D. C. Vreeland, "Corrosion of Austenitic Stainless Steels in Sulfuric Acid," Corrosion, vol. 13, no. 10. p.21–26, 1957.
DOI: 10.5006/0010-9312-13.10.21
Google Scholar
[5]
A. P. Guide, T. O. The, and O. F. N. Alloys, "Corrosion Resistance of Nickel-Containing Alloys in Organic Acids and Related Compounds (Ceb-6) a Practical Guide To the Use of Nickel-Containing Alloys N O 1285", [Online]. Available: www.nickelinstitute.org
Google Scholar
[6]
S. Delaunay, C. Mansour, E. M. Pavageau, G. Cote, G. Lefegravevre, and M. Feacutedoroff, "Formation and deposition of iron oxides on stainless steel and carbon steel in conditions of secondary circuits of pressurized water reactors, " corrosion, vol. 67, no. 1, p.1–10, 2011.
DOI: 10.5006/1.3546848
Google Scholar
[7]
A. Ul-Hamid, H. Saricimen, A. Quddus, A. I. Mohammed, and L. M. Al-Hems, "Corrosion study of SS304 and SS316 alloys in atmospheric, underground and seawater splash zone in the Arabian Gulf," Corros. Eng. Sci. Technol., vol. 52, no. 2, p.134–140, 2017.
DOI: 10.1080/1478422X.2016.1213974
Google Scholar
[8]
I. G. Ayu Arwati et al., "Temperature Effects on Stainless Steel 316L Corrosion in the Environment of Sulphuric Acid (H2SO4)," IOP Conf. Ser. Mater. Sci. Eng., vol. 343, no. 1, 2018.
DOI: 10.1088/1757-899X/343/1/012016
Google Scholar
[9]
A.Fraser, "Etching 316/316L to reveal microstructure." https://www.carpentertechnology.com/blog/etching-316-316l-to-reveal-microstructure (accessed Jan. 08, 2023).
Google Scholar
[10]
S. ASSIST, "Standard Operation Procedure : Diluting concentrated hydrochloric acid," no. June, p.1–4, 2015.
Google Scholar
[11]
ASTM, "ASTM A240/240M - 20 Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications," ASTM International, vol. 1.03. 2021.
DOI: 10.1520/a0240_a0240m-03a
Google Scholar
[12]
C. N. Mccowan, "Advances in Cryogenic Engineering Materials," Adv. Cryog. Eng. Mater., no. January 1999, 1998.
DOI: 10.1007/978-1-4757-9056-6
Google Scholar
[13]
ASTM G31 – 72, "ASTM G31: Standard Practice for Laboratory Immersion Corrosion Testing of Metals," ASTM Int., vol. i, no. Reapproved, p.5–7, 2004.
Google Scholar
[14]
X. Chen, M. Gussev, M. Balonis, M. Bauchy, and G. Sant, "Emergence of micro-galvanic corrosion in plastically deformed austenitic stainless steels," Mater. Des., vol. 203, p.109614, 2021.
DOI: 10.1016/j.matdes.2021.109614
Google Scholar
[15]
A.Schulman, "Chemical resistance of high and low density polyethylene," 1981, [Online]. Available: https://www.plastico.com/catalogos//
Google Scholar
[16]
Y. Jin, M. Bernacki, G. S. Rohrer, A. D. Rollett, B. Lin, and N. Bozzolo, "Formation of annealing twins during recrystallization and grain growth in 304L austenitic stainless steel," Mater. Sci. Forum, vol. 753, p.113–116, 2013.
DOI: 10.4028/www.scientific.net/MSF.753.113
Google Scholar
[17]
A. F. Padilha, R. L. Plaut, and P. R. Rios, "Annealing of cold-worked austenitic stainless steels," ISIJ Int., vol. 43, no. 2, p.135–143, 2003.
DOI: 10.2355/isijinternational.43.135
Google Scholar
[18]
I. AghaAli, M. Farzam, M. A. Golozar, and I. Danaee, "The effect of repeated repair welding on mechanical and corrosion properties of stainless steel 316L," Mater. Des., vol. 54, no. February, p.331–341, 2014.
DOI: 10.1016/j.matdes.2013.08.052
Google Scholar
[19]
S. Baskutis, J. Baskutiene, R. Bendikiene, A. Ciuplys, and K. Dutkus, "Comparative research of microstructure and mechanical properties of stainless and structural steel dissimilar welds," Materials (Basel)., vol. 14, no. 20, 2021.
DOI: 10.3390/ma14206180
Google Scholar
[20]
M. Sharifitabar, A. Halvaee, and S. Khorshahian, "Microstructure and mechanical properties of resistance upset butt welded 304 austenitic stainless steel joints," Mater. Des., vol. 32, no. 7, p.3854–3864, 2011.
DOI: 10.1016/j.matdes.2011.03.007
Google Scholar
[21]
A. K. Rivai, N. Shabrina, B. Sugeng, and S. G. Sukaryo, "Microstructure Investigations of Phase Transformation in Cold Working AISI 316L Austenitic Stainless Steel," J. Phys. Conf. Ser., vol. 2243, no. 1, 2022.
DOI: 10.1088/1742-6596/2243/1/012063
Google Scholar
[22]
L. Li, C.-Q. Li, and M. Mahmoodian, "Effect of Applied Stress on Corrosion and Mechanical Properties of Mild Steel," J. Mater. Civ. Eng., vol. 31, no. 2, p.1–13, 2019.
DOI: 10.1061/(asce)mt.1943-5533.0002594
Google Scholar
[23]
Z. T. Mu, D. H. Chen, Z. T. Zhu, and B. Ye, "The stress concentration factor with different shapes of corrosion pits," Adv. Mater. Res., vol. 152–153, p.1115–1119, 2011.
DOI: 10.4028/www.scientific.net/AMR.152-153.1115
Google Scholar
[24]
K. Masaki, Y. Ochi, and T. Matsumura, "Small crack property of austenitic stainless steel with artificial corrosion pit in long life regime of fatigue," Int. J. Fatigue, vol. 28, no. 11, p.1603–1610, 2006.
DOI: 10.1016/j.ijfatigue.2005.06.055
Google Scholar
[25]
M. Cerit, K. Genel, and S. Eksi, "Numerical investigation on stress concentration of corrosion pit," Eng. Fail. Anal., vol. 16, no. 7, p.2467–2472, 2009.
DOI: 10.1016/j.engfailanal.2009.04.004
Google Scholar
[26]
A. S. Alshamsi and A. AlBlooshi, "Effect of surface roughness on the corrosion behavior of pure iron in acidic solutions," Int. J. Electrochem. Sci., vol. 14, no. 6, p.5794–5812, 2019.
DOI: 10.20964/2019.06.64
Google Scholar
[27]
V. Zatkalíková, M. Oravcová, P. Palček, and L. Markovičová, "The effect of surface treatment on corrosion resistance of austenitic biomaterial," Trans. Famena, vol. 41, no. 4, p.25–34, 2017.
DOI: 10.21278/TOF.41403
Google Scholar
[28]
M. Ash and I. Ash, Handbook of Corrosion inhibitors, vol. 98, no. 10. 2000. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0026057600834455
Google Scholar
[29]
A. groysman, Corrosion for Everybody. 2010.
Google Scholar
[30]
M. Groover, "Fundementals of Modern Manufacturing Materials,Processes and Systems," John Wiley Sons, p.493, 2010.
Google Scholar
[31]
C. Zheng, Z. Liu, Q. Liu, Y. Kong, and C. Liu, "Effect of Cr on Corrosion Behavior of Laser Cladding Ni-Cr-Mo Alloy Coatings in Sulfuric Acid Dew Point Corrosion Environment," Coatings, vol. 12, no. 4, 2022.
DOI: 10.3390/coatings12040421
Google Scholar
[32]
K. Hashimoto, K. Asami, A. Kawashima, H. Habazaki, and E. Akiyama, "The role of corrosion-resistant alloying elements in passivity," Corros. Sci., vol. 49, no. 1, p.42–52, 2007.
DOI: 10.1016/j.corsci.2006.05.003
Google Scholar
[33]
"Alloying Elements in Stainless Steel," aalco. https://www.aalco.co.uk/datasheets/Stainless-Steel-Alloying-Elements-in-Stainless-Steel_98.ashx (accessed Mar. 17, 2023).
DOI: 10.2355/isijinternational.isijint-2018-478
Google Scholar
[34]
S. Thirumalai Kumaran, K. Baranidharan, M. Uthayakumar, and P. Parameswaran, "Corrosion studies on stainless steel 316 and their prevention – A review," INCAS Bull., vol. 13, no. 3, p.245–251, 2021.
DOI: 10.13111/2066-8201.2021.13.3.21
Google Scholar
[35]
H. K. D. H. Sourmail, T and Bhadeshia, "Stainless steel." University of Cambridge. [Online]. Available: https://www.phase-trans.msm.cam.ac.uk/2005/Stainless_steels/stainless.html
Google Scholar
[36]
C. Xu and W. Gao, "Pilling-bedworth ratio for oxidation of alloys," Mater. Res. Innov., vol. 3, no. 4, p.231–235, 2000.
DOI: 10.1007/s100190050008
Google Scholar
[37]
T. H. E. Variety, "Electrochemical Analysis and The Voltaic Series," vol. 117, no. 404, p.404–424, 1918.
Google Scholar
[38]
Inco, "Corrosion Resistance of the Austenic Chromium-Nickel Stainless Steels in Chemical Environments," INCO (Int Nickel Co, Inc) Corros Man, p. p.20, 1963.
Google Scholar
[39]
T. G. Gooch, "Corrosion behavior of welded stainless steel," Weld. J. (Miami, Fla), vol. 75, no. 5, p.135-s, 1996.
Google Scholar
[40]
T. Ohmi, Y. Nakagawa, M. Nakamura, A. Ohki, and T. Koyama, "Formation of chromium oxide on 316L austenitic stainless steel," J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 14, no. 4, p.2505–2510, 1996.
DOI: 10.1116/1.580010
Google Scholar
[41]
S. Steinberg, K. Kawamura, R. Kaplan, P. Physics, and S. Science, "International Journal of Environmental Analytical Chemistry The Determination of α -Keto Acids and Oxalic Acid in Rain, Fog and Mist by HPLC," no. November 2014, p.37–41.
DOI: 10.1080/03067318508077036
Google Scholar
[42]
M. Breidert, M. Funke, and C. Marko, ASM Volume 13C Corrosion : Environments and Industries, 9th ed., vol. 132, no. 31–32. 2007.
DOI: 10.1055/s-2007-984942
Google Scholar
[43]
T. E. G. K. Nassau, A.E. Miller, "The Reaction of Simulated Rain with Copper, Copper Platina , And Some Copper Compounds," vol. 27, no. 7, p.703–719, 1987.
DOI: 10.1016/0010-938x(87)90052-7
Google Scholar
[44]
R. M. Cornell and S. U. T. Iron, "The Iron Oxides," p.209–210, 1999.
Google Scholar