Hot Corrosion, Phase Stability and Compressive Strength of AlCrFeNiCu-Nb High Entropy Alloy Fabricated via Additive Manufacturing

Article Preview

Abstract:

This work examines the phase stability during hot corrosion and the compressive strength of the AlCrFeNiCu-Nb high entropy alloy (HEA) produced using laser additive manufacturing, emphasizing its prospective uses in energy materials. The alloy's distinctive composition was chosen for its capacity to endure severe environments, including elevated temperatures and corrosive conditions, essential for energy-related applications. Phase stability was evaluated by X-ray diffraction, demonstrating remarkable preservation of critical phases despite high-temperature oxidation exposure. Compressive strength tests revealed the alloy's exceptional mechanical capabilities, underscoring its significant resistance to deformation. The AlCrFeNiCu-Nb HEA demonstrates significant promise for application in rigorous energy sectors, encompassing components for advanced power generation systems, high-temperature reactors, and corrosive conditions inside energy infrastructure.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 378)

Pages:

45-51

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Slabbert, F. Mulaudzi, L. Cornish, M. Papo, V. Morudu and J. Zhang, Journal of the Southern African Institute of Mining and Metallurgy, 113, 81-90 (2013).

Google Scholar

[2] F. Mulaudzi, L. Cornish, G. Slabbert, M. Papo and J. Zhang, Journal of the Southern African Institute of Mining and Metallurgy, 113, 121-128 (2013).

Google Scholar

[3] V.K. Soni and A.K. Sinha, Transactions of the Indian Institute of Metals, 76, 897-914 (2023).

Google Scholar

[4] T. Ron, A. Shirizly and E. Aghion, Materials, 16, 2454 (2023).

Google Scholar

[5] M. Abdullah, M. Mukarram, T.B. Yaqub, F. Fernandes and K. Yaqoob, International Journal of Refractory Metals and Hard Materials, 115, 106300 (2023).

DOI: 10.1016/j.ijrmhm.2023.106300

Google Scholar

[6] C. Zhu, L. Xu, M. Liu, M. Guo and S. Wei, Journal of Materials Research and Technology, 24, 7832-7851 (2023).

Google Scholar

[7] Q. Zhao, X. Huang, Z. Zhan, S. Zhou, J. Liu, P. Zhu, L. Wei, X. Li, C. Li and Y. Xie, Corrosion Science, 220, 111291 (2023).

Google Scholar

[8] S.A. Tyagi and M. Manjaiah, Bioprinting, 30, e00267 (2023).

Google Scholar

[9] N. Rathi, P. Kumar and A. Gupta, Materials Today: Proceedings (2023).

Google Scholar

[10] J. Kumar, N. Nayan, R.K. Gupta, M. Ramalingam Munisamy and K. Biswas, International Journal of Metalcasting, 17, 860-873 (2023).

DOI: 10.1007/s40962-022-00811-y

Google Scholar

[11] X. Liu, Z. Yang, D. Cui, Q. Wu, Z. Wang, J. Li, J. Wang and F. He, Metallurgical and Materials Transactions A, 54, 4620-4624 (2023).

Google Scholar

[12] Z. Jiang, W. Chen, C. Chu, Z. Fu, J. Ivanisenko, H. Wang, S. Peng, Y. Lu, E.J. Lavernia and H. Hahn, Scripta Materialia, 230, 115421 (2023).

DOI: 10.1016/j.scriptamat.2023.115421

Google Scholar

[13] M.R. Zamani, H. Mirzadeh, M. Malekan, I. Weißensteiner and M. Roostaei, Journal of Alloys and Compounds, 957, 170443 (2023).

DOI: 10.1016/j.jallcom.2023.170443

Google Scholar

[14] S.H. Shim, H. Pouraliakbar, H. Minouei, M.S. Rizi, V. Fallah, Y.-S. Na, J.H. Han and S.I. Hong, Journal of Alloys and Compounds, 954, 170091 (2023).

DOI: 10.1016/j.jallcom.2023.170091

Google Scholar

[15] M.-G. Jo, J.-Y. Suh, M.-Y. Kim, H.-J. Kim, W.-S. Jung, D.-I. Kim and H.N. Han, Materials Science and Engineering: A, 838, 142748 (2022).

Google Scholar

[16] P. Li, A. Wang and C. Liu, Journal of Alloys and Compounds, 694, 55-60 (2017).

Google Scholar

[17] Y. Yu, F. He, Z. Qiao, Z. Wang, W. Liu and J. Yang, Journal of Alloys and Compounds, 775, 1376-1385 (2019).

Google Scholar