Microstructural Evolution and Mechanical Behaviour of AlCrFeNiCu High Entropy Alloy Doped with Ti

Article Preview

Abstract:

High-entropy alloys (HEAs) have garnered significant attention due to their exceptional properties, such as high strength, hardness, corrosion resistance, and excellent formability, which present promising opportunities for energy-related applications. This study successfully synthesized a Ti-doped AlCrFeNiCu high-entropy alloy (HEA) using the laser additive manufacturing (LAM) technique, with potential applications in energy materials. The effects of Ti doping (1 at% and 3 at%) on the mechanical properties and microstructural development of the AlCrFeNiCu HEA were systematically examined. Microstructural analysis using scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) identified a dual-phase structure comprising BCC and FCC solid solutions. An Instron universal testing machine and Vickers microhardness (HVN) testing were utilized to evaluate mechanical properties. The findings indicated that although compressive strength diminished with elevated Ti content, Ti enhanced the microhardness of the alloy. The findings indicate the potential applications of Ti-doped AlCrFeNi Cu HEAs in energy sectors, such as components for concentrated solar power systems, nuclear reactors, and advanced gas turbines, which require materials capable of withstanding elevated temperatures, mechanical stress, and corrosive environments. The tailored mechanical and microstructural properties of this HEA position it as a viable candidate for enhancing the longevity and efficiency of energy systems operating under challenging conditions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 378)

Pages:

53-59

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Abd-Elaziem, M.A. Darwish, A. Hamada and W.M. Daoush, Materials & Design, 112850 (2024).

DOI: 10.1016/j.matdes.2024.112850

Google Scholar

[2] S.A. Tyagi and M. Manjaiah, Bioprinting, 30, e00267 (2023).

Google Scholar

[3] N. Rathi, P. Kumar and A. Gupta, Materials Today: Proceedings (2023).

Google Scholar

[4] M. Bhuvanesh Kumar, P. Sathiya and S.M. Senthil, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45, 164 (2023).

Google Scholar

[5] M. Zhang, M. Li, J. Chi, S. Wang, M. Fang, C. Zhou, B. Liang and J. Xue, Ceramics International, 46, 14161-14172 (2020).

Google Scholar

[6] N. Malatji, A. Popoola, T. Lengopeng and S. Pityana, International Journal of Minerals, Metallurgy and Materials, 27, 1332-1340 (2020).

DOI: 10.1007/s12613-020-2178-x

Google Scholar

[7] A. Shabania, M.R. Toroghinejada, A. Shafyeia and R.E. Logé, Materials Chemistry and Physics, 221, 68-77 (2019).

Google Scholar

[8] S. Ma and Y. Zhang, Materials Science and Engineering: A, 532, 480-486 (2012).

Google Scholar

[9] Q. Zhao, X. Huang, Z. Zhan, S. Zhou, J. Liu, P. Zhu, L. Wei, X. Li, C. Li and Y. Xie, Corrosion Science, 220, 111291 (2023).

Google Scholar

[10] V.K. Soni and A.K. Sinha, Transactions of the Indian Institute of Metals, 76, 897-914 (2023).

Google Scholar

[11] Y. Chen, T. Duval, U. Hung, J. Yeh and H. Shih, Corrosion science, 47, 2257-2279 (2005).

Google Scholar

[12] M.R. Zamani, H. Mirzadeh, M. Malekan, I. Weißensteiner and M. Roostaei, Journal of Alloys and Compounds, 957, 170443 (2023).

DOI: 10.1016/j.jallcom.2023.170443

Google Scholar

[13] S.H. Shim, H. Pouraliakbar, H. Minouei, M.S. Rizi, V. Fallah, Y.-S. Na, J.H. Han and S.I. Hong, Journal of Alloys and Compounds, 954, 170091 (2023).

DOI: 10.1016/j.jallcom.2023.170091

Google Scholar

[14] X. Liu, Z. Yang, D. Cui, Q. Wu, Z. Wang, J. Li, J. Wang and F. He, Metallurgical and Materials Transactions A, 54, 4620-4624 (2023).

Google Scholar

[15] J. Kumar, N. Nayan, R.K. Gupta, M. Ramalingam Munisamy and K. Biswas, International Journal of Metalcasting, 17, 860-873 (2023).

DOI: 10.1007/s40962-022-00811-y

Google Scholar

[16] Z. Jiang, W. Chen, C. Chu, Z. Fu, J. Ivanisenko, H. Wang, S. Peng, Y. Lu, E.J. Lavernia and H. Hahn, Scripta Materialia, 230, 115421 (2023).

DOI: 10.1016/j.scriptamat.2023.115421

Google Scholar

[17] S. Fang, W. Chen and Z. Fu, Materials & Design (1980-2015), 54, 973-979 (2014).

Google Scholar

[18] L. Kanyane, T. Malepe, N. Malatji and A. Popoola, Metallography, Microstructure, and Analysis, 10, 601-609 (2021).

DOI: 10.1007/s13632-021-00778-y

Google Scholar

[19] L.R. Kanyane, O.S. Adesina, A. Popoola, G.A. Farotade and N. Malatji, Procedia Manufacturing, 35, 1267-1272 (2019).

DOI: 10.1016/j.promfg.2019.06.086

Google Scholar

[20] A. Ponomareva, A.V. Ruban, B. Mukhamedov and I. Abrikosov, Acta Materialia, 150, 117-129 (2018).

DOI: 10.1016/j.actamat.2018.02.007

Google Scholar

[21] W. Li, P.K. Liaw and Y. Gao, Intermetallics, 99, 69-83 (2018).

Google Scholar

[22] H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu and Z. Lu, Advanced Materials, 29, 1701678 (2017).

Google Scholar