Optimization of Hardness and Adhesion of Al2O3-40%TiO2 Coating Obtained by HVOF Spraying through Process Parameter Control

Article Preview

Abstract:

The paper presents an optimization approach for enhancing the hardness and adhesion of Al2O3-40%TiO2 coatings produced by High-Velocity Oxi-Fuel (HVOF) thermal spraying, aimed at their application in protecting components subjected to aggressive environments and severe mechanical stresses [1-4]. Through an experimental factorial program, key parameters of the HVOF process such as fuel flow rate, oxygen flow rate, spray distance, and powder feed rate were investigated to identify optimal conditions leading to improved mechanical performance of the deposited layers. Vickers hardness and tensile adhesion tests were utilized to evaluate the properties of the coatings. The results indicated that increasing the fuel and oxygen flow rates, coupled with reducing the spray distance, significantly increased the hardness of the coatings, achieving values up to 244 HV5. Moreover, optimizing these parameters maximized the coating-substrate adhesion, reaching values exceeding 30 MPa. Microstructural analysis using scanning electron microscopy (SEM) revealed that optimized HVOF parameters generated dense layers with low porosity and enhanced adhesion at the layer-substrate interface, thereby explaining the superior mechanical behaviors of the coatings. These findings demonstrate the capability of HVOF technology to produce Al2O3-40%TiO2 layers with optimal mechanical properties, essential for applications requiring resistance to wear, impact, and corrosive environments [5-7].

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 378)

Pages:

77-90

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Viswanath, B., Suresh, J. and Ragunath, L. (2020)"HVOF sprayed mullite coatings for use in extreme environments." J. Therm. Spray Eng 2: 43-49.

Google Scholar

[2] Murariu A. C. and Perianu I. A. (2019) "Influence of HVOF deposition thickness on adhesion strength." Advanced Technologies and Materials 44.1: 33-40.

DOI: 10.24867/atm-2019-1-006

Google Scholar

[3] Zhang, W. (2021) "Visible‐light responsive TiO2‐based materials for efficient solar energy utilization." Advanced Energy Materials 11.15: 2003303.

Google Scholar

[4] Navidpour, A. H. (2023) "Progress in the application of surface engineering methods in immobilizing TiO2 and ZnO coatings for environmental photocatalysis." Catalysis Reviews 65.3: 822-873.

DOI: 10.1080/01614940.2021.1983066

Google Scholar

[5] Irving, B., Knight, R., Smith, R. W. (1993) "The HVOF process-The hottest topic in the thermal spray industry." Welding journal, 72.7: 25-30.

Google Scholar

[6] Sidhu, T. S., Prakash, S., Agrawal, R. D. (2005) "State of the art of HVOF coating investigations—A review." Marine Technology Society Journal, 39.2: 53-64.

DOI: 10.4031/002533205787443908

Google Scholar

[7] Zhai, W. (2021) "Recent progress on wear‐resistant materials: designs, properties, and applications." Advanced Science, 8.11: 200

Google Scholar

[8] Meena, S. L. (2021) "Effect of load on the wear behaviour of Al2O3 HVOF sprayed coating." Journal of Physics: Conference Series. Vol. 1950. No. 1. IOP Publishing.

Google Scholar

[9] Michalak, M. (2021) "Wear behavior analysis of Al2O3 coatings manufactured by APS and HVOF spraying processes using powder and suspension feedstocks." Coatings 11.8: 879.

DOI: 10.3390/coatings11080879

Google Scholar

[10] Vats, A. (2021) "Influence of deposition parameters on Tribological Performance of HVOF Coating: A review." IOP Conference Series: Materials Science and Engineering. Vol. 1017. No. 1. IOP Publishing.

DOI: 10.1088/1757-899x/1017/1/012015

Google Scholar

[11] Dongmo, E., Wenzelburger, M. and Gadow, R. (2008) "Analysis and optimization of the HVOF process by combined experimental and numerical approaches." Surface and Coatings Technology. 202.18: 4470-4478.

DOI: 10.1016/j.surfcoat.2008.04.029

Google Scholar

[12] Niittymäki, M. (2018) "Effect of temperature and humidity on dielectric properties of thermally sprayed alumina coatings." IEEE Transactions on Dielectrics and Electrical Insulation 25.3: 908-918.

DOI: 10.1109/tdei.2018.006892

Google Scholar

[13] Lins, S. A. B., Rocha, M. C. G. and D'Almeida, J. R. M. (2019) "Mechanical and thermal properties of high-density polyethylene/alumina/glass fiber hybrid composites." Journal of Thermoplastic Composite Materials, 32.11: 1566-1581.

DOI: 10.1177/0892705718797391

Google Scholar

[14] Murariu A. C., and Perianu I. A. (2019) "Influence of HVOF deposition thickness on adhesion strength." Advanced Technologies and Materials 44.1: 33-40.

DOI: 10.24867/atm-2019-1-006

Google Scholar

[15] Guzanová, A. (2019) "Properties of coatings created by HVOF technology using micro-and nano-sized powder." KOM–Corrosion and Material Protection Journal 63.2: 86-93.

DOI: 10.2478/kom-2019-0011

Google Scholar

[16] Hutsaylyuk, V. (2020) "Improvement of wear resistance of aluminum alloy by HVOF method." Journal of Materials Research and Technology, 9.6: 16367-16377.

DOI: 10.1016/j.jmrt.2020.11.102

Google Scholar

[17] Sathiyamoorthy, R., Shanmugam, K. and Balasubramanian, V. (2015) "Establishing an empirical relationship to predict porosity and hardness of Titanium Oxide (TiO2) coating deposited by High Velocity Oxy Fuel (HVOF) spraying." system 8: 10.

Google Scholar

[18] Utu, I.D. (2015) "Properties of the thermally sprayed Al2O3–TiO2 coatings deposited on titanium substrate." International Journal of Refractory Metals and Hard Materials 51: 118-123.

DOI: 10.1016/j.ijrmhm.2015.03.009

Google Scholar

[19] Bozorgtabar, M., Mohammadreza R. and Mehdi Salehi. (2010). "Novel photocatalytic TiO2 coatings produced by HVOF thermal spraying process." Materials letters 64.10: 1173-1175.

DOI: 10.1016/j.matlet.2010.02.042

Google Scholar

[20] Lima, R. S. and Basil, R. M. (2003) "Optimized HVOF titania coatings." Journal of thermal spray technology 12: 360-369.

DOI: 10.1361/105996303770348230

Google Scholar

[21] Utu, I. D. and Marginean, G. (2017). "Effect of electron beam remelting on the characteristics of HVOF sprayed Al2O3-TiO2 coatings deposited on titanium substrate." Colloids and surfaces a: physicochemical and engineering aspects 526: 70-75.

DOI: 10.1016/j.colsurfa.2016.10.034

Google Scholar

[22] Murariu, A. C., Pleşu, N. and Perianu, I. A. (2017) "Investigations on corrosion behaviour of WC–CrC–Ni coatings deposited by HVOF thermal spraying process." International Journal of Electrochemical Science 12.2: 1535-1549.

DOI: 10.20964/2017.02.60

Google Scholar

[23] Buzdugan, R. M., Murariu, A. C., Perianu, I. A. and Simon, N. (2016) "Abrasive wear resistance of HVOF thermal sprayed WC-CrC-Ni coatings." BID-ISIM, 4, 19-22.

Google Scholar

[24] Ruppi, S., Larsson, A. and Flink, A. (2008) "Nanoindentation hardness, texture and microstructure of α-Al2O3 and κ-Al2O3 coatings." Thin Solid Films, 516.18: 5959-5966.

DOI: 10.1016/j.tsf.2007.10.078

Google Scholar

[25] Özel, S. (2016) "The microstructure and hardness properties of plasma sprayed Cr2O3/Al2O3 coatings." Journal Of Optoelectronics and Advanced Materials, 18.11-12: 1052-1056.

Google Scholar

[26] Szkodo, M., Bień, A. and Antoszkiewicz, M. (2016) "Effect of plasma sprayed and laser re-melted Al2O3 coatings on hardness and wear properties of stainless steel." Ceramics International, 42.9: 11275-11284.

DOI: 10.1016/j.ceramint.2016.04.044

Google Scholar

[27] Maier, J. (1985) "Space charge regions in solid two-phase systems and their conduction contribution—I. Conductance enhancement in the system ionic conductor-'inert'phase and application on AgC1: Al2O3 and AgC1: SiO2." Journal of Physics and Chemistry of Solids, 46.3: 309-320.

DOI: 10.1016/0022-3697(85)90172-6

Google Scholar

[28] Heuer, A. H. (2013) "On the growth of Al2O3 scales." Acta Materialia, 61.18: 6670-6683.

Google Scholar

[29] Yin, Z. (2007) "Tribological properties of plasma sprayed Al/Al2O3 composite coatings." Wear, 263.7-12: 1430-1437.

DOI: 10.1016/j.wear.2007.01.052

Google Scholar

[30] Lei, Y. (2017) "Improvement of thermal insulation performance of silica aerogels by Al2O3 powders doping." Ceramics International, 43.14: 10799-10804.

DOI: 10.1016/j.ceramint.2017.05.100

Google Scholar

[31] Zhang, M. (2020) "Microstructure, infrared optical properties and thermal stability of ZrB2 and double-layer-structure Al2O3/ZrB2 thin films by magnetron sputtering technique." Applied Surface Science 532: 147280.

DOI: 10.1016/j.apsusc.2020.147280

Google Scholar

[32] Dhonge, B. P. (2011) "Spray pyrolytic deposition of transparent aluminum oxide (Al2O3) films." Applied Surface Science, 258.3: 1091-1096.

DOI: 10.1016/j.apsusc.2011.09.040

Google Scholar

[33] Liu, Z. (2021) "Durable superhydrophobic PVDF/FEVE/GO@ TiO2 composite coating with excellent anti-scaling and UV resistance properties." Chemical Engineering Journal, 411: 128632.

DOI: 10.1016/j.cej.2021.128632

Google Scholar

[34] Zaleska, A. (2008) "Doped-TiO2: a review." Recent patents on engineering, 2.3: 157-164.

Google Scholar

[35] Gázquez, M. J., Moreno, S. M. P. and Bolívar, J. P. (2021) "TiO2 as white pigment and valorization of the waste coming from its production. In: Titanium dioxide (Tio₂) and its applications." Elsevier. p: 311-335.

DOI: 10.1016/b978-0-12-819960-2.00011-0

Google Scholar

[36] Ławrynowicz, Z. (2017) "Bainitic reaction and microstructure evolution in two normalized and tempered steels designed for service at elevated temperatures." Advances in Materials Science, 17.4: 22-36.

DOI: 10.1515/adms-2017-0019

Google Scholar

[37] Rosado, C. and Schütze, M. (2003) "Protective behaviour of newly developed coatings against metal dusting." Materials and Corrosion, 54.11: 831-853.

DOI: 10.1002/maco.200303736

Google Scholar

[38] Lehmusto, J., Yrjas, P. and Hupa, M. (2015) "The Effect of Pre-Oxidation on High-Temperature Corrosion Resistance of Superheater Steels. In: Electrochemical Society Meeting Abstracts 227". The Electrochemical Society. p: 1112-1112.

DOI: 10.1149/ma2015-01/13/1112

Google Scholar

[39] Gwoździk, M. (2021). "Characterization of oxide layers formed on 10CrMo9-10 steel operated for a long time in the power industry." Bulletin of the Polish Academy of Sciences. Technical Sciences, 69.4.

DOI: 10.24425/bpasts.2021.137730

Google Scholar

[40] Clavijo-Mejía, G. A. (2019) "Effect of HVOF Process Parameters on TiO2 Coatings: An Approach Using DoE and First-Order Process Maps." Journal of Thermal Spray Technology 28: 1160-1172.

DOI: 10.1007/s11666-019-00895-9

Google Scholar

[41] Islak, S. (2013) "Effect on microstructure of TiO2 rate in Al2O3-TiO2 composite coating produced using plasma spray method."

Google Scholar

[42] Klyatskina, E. (2015) "A study of the influence of TiO2 addition in Al2O3 coatings sprayed by suspension plasma spray." Surface and Coatings Technology, 278: 25-29.

DOI: 10.1016/j.surfcoat.2015.07.029

Google Scholar

[43] Urmi, W. T. (2020) "Experimental investigation on the stability of 40% ethylene glycol based TiO2-Al2O3 hybrid nanofluids." Journal of Advanced Research in Fluid Mechanics and thermal Sciences, 69.1: 110-121.

DOI: 10.37934/arfmts.69.1.110121

Google Scholar

[44] Fathi, R. (2022) "Past and present of functionally graded coatings: Advancements and future challenges." Applied Materials Today, 26: 101373.

DOI: 10.1016/j.apmt.2022.101373

Google Scholar

[45] Sathish, M., Radhika, N. and Saleh, B. (2021) "A critical review on functionally graded coatings: Methods, properties, and challenges." Composites Part B: Engineering, 225: 109278.

DOI: 10.1016/j.compositesb.2021.109278

Google Scholar

[46] Candel, A. and Gadow, R. (2006) "Optimized multiaxis robot kinematic for HVOF spray coatings on complex shaped substrates." Surface and Coatings Technology, 201.5: 2065-2071.

DOI: 10.1016/j.surfcoat.2006.04.044

Google Scholar

[47] Breen, D. (2010) "Thermal Robotic Arm Controlled Spraying via Robotic Arm and Vision System."

Google Scholar

[48] Dongmo, E.; Wenzelburger, M. and Gadow, R. (2008) "Analysis and optimization of the HVOF process by combined experimental and numerical approaches. Surface and Coatings Technology, 202.18: 4470-4478.

DOI: 10.1016/j.surfcoat.2008.04.029

Google Scholar

[49] Ruiz-Luna, H. (2014) "Effect of HVOF processing parameters on the properties of NiCoCrAlY coatings by design of experiments." Journal of thermal spray technology, 23: 950-961.

DOI: 10.1007/s11666-014-0121-2

Google Scholar

[50] Shinde, S. and Sampath, S. (2022) "A critical analysis of the tensile adhesion test for thermally sprayed coatings." Journal of Thermal Spray Technology, 31.8: 2247-2279.

DOI: 10.1007/s11666-022-01468-z

Google Scholar

[51] Berndt, C. C. (1990) "Tensile adhesion testing methodology for thermally sprayed coatings." Journal of materials engineering, 12.2: 151-158.

DOI: 10.1007/bf02834068

Google Scholar

[52] Moein, S. and Logeswaran, R. (2014) "KGMO: A swarm optimization algorithm based on the kinetic energy of gas molecules." Information Sciences, 275: 127-144.

DOI: 10.1016/j.ins.2014.02.026

Google Scholar

[53] Marin, E. (2012) "Multilayer Al2O3/TiO2 Atomic Layer Deposition coatings for the corrosion protection of stainless steel." Thin Solid Films, 522: 283-288.

DOI: 10.1016/j.tsf.2012.08.023

Google Scholar

[54] Zhai, W. (2021) "Recent progress on wear‐resistant materials: designs, properties, and applications." Advanced Science, 8.11: 200.

Google Scholar

[55] Parhizkar, N., Shahrabi, T. and Ramezanzadeh, B. (2017) "A new approach for enhancement of the corrosion protection properties and interfacial adhesion bonds between the epoxy coating and steel substrate through surface treatment by covalently modified amino functionalized graphene oxide film." Corrosion science, 123: 55-75.

DOI: 10.1016/j.corsci.2017.04.011

Google Scholar

[56] Alkiayat, M. (2021) "A practical guide to creating a Pareto chart as a quality improvement tool." Global Journal on Quality and Safety in Healthcare, 4(2), 83-84.

DOI: 10.36401/jqsh-21-x1

Google Scholar