[1]
M. Ball and M. Wietschel, "The future of hydrogen - opportunities and challenges," Int J Hydrogen Energy, vol. 34, no. 2, p.615–627, 2009.
DOI: 10.1016/j.ijhydene.2008.11.014
Google Scholar
[2]
N. E. Laadel, M. El Mansori, N. Kang, S. Marlin, and Y. Boussant-Roux, "Permeation barriers for hydrogen embrittlement prevention in metals – A review on mechanisms, materials suitability and efficiency," Sep. 05, 2022, Elsevier Ltd.
DOI: 10.1016/j.ijhydene.2022.07.164
Google Scholar
[3]
C. San Marchi, B. P. Somerday, X. Tang, and G. H. Schiroky, "Effects of alloy composition and strain hardening on tensile fracture of hydrogen-precharged type 316 stainless steels," Int J Hydrogen Energy, vol. 33, no. 2, p.889–904, Jan. 2008.
DOI: 10.1016/j.ijhydene.2007.10.046
Google Scholar
[4]
J. E. Lee, D. H. Bae, W. S. Chung, K. H. Kim, J. H. Lee, and Y. R. Cho, "Effects of annealing on the mechanical and interface properties of stainless steel/aluminum/copper clad-metal sheets," J Mater Process Technol, vol. 187–188, p.546–549, Jun. 2007.
DOI: 10.1016/j.jmatprotec.2006.11.121
Google Scholar
[5]
K. S. Lee, D. H. Yoon, H. K. Kim, Y. N. Kwon, and Y. S. Lee, "Effect of annealing on the interface microstructure and mechanical properties of a STS-Al-Mg 3-ply clad sheet," Materials Science and Engineering: A, vol. 556, p.319–330, Oct. 2012.
DOI: 10.1016/j.msea.2012.06.094
Google Scholar
[6]
J. Y. Jin and S. I. Hong, "Effect of heat treatment on tensile deformation characteristics and properties of Al3003/STS439 clad composite," Materials Science and Engineering: A, vol. 596, p.1–8, Feb. 2014.
DOI: 10.1016/j.msea.2013.12.019
Google Scholar
[7]
B. Y. Zhang et al., "Microstructure and mechanical properties of SUS304/Q235 multilayer steels fabricated by roll bonding and annealing," Materials Science and Engineering: A, vol. 740–741, p.92–107, Jan. 2019.
DOI: 10.1016/j.msea.2018.10.054
Google Scholar
[8]
H. A. Khan, K. Asim, F. Akram, A. Hameed, A. Khan, and B. Mansoor, "Roll bonding processes: State-of-the-art and future perspectives," Sep. 01, 2021, MDPI AG.
DOI: 10.3390/met11091344
Google Scholar
[9]
X. Zhou, X. K. Zhao, R. Cao, R. H. Zhang, Y. Ding, and X. B. Zhang, "Microstructure and fracture behavior of special multilayered steel," Materials, vol. 13, no. 3, Feb. 2020.
DOI: 10.3390/ma13030789
Google Scholar
[10]
T. Koseki, J. Inoue, and S. Nambu, "Development of multilayer steels for improved combinations of high strength and high ductility," 2014.
DOI: 10.2320/matertrans.M2013382
Google Scholar
[11]
M. Dong et al., "Interface Strengthening and Toughening Mechanism of Hot Rolled Multilayer TWIP/40Si2CrMo Steels," Crystals (Basel), vol. 12, no. 10, Oct. 2022.
DOI: 10.3390/cryst12101367
Google Scholar
[12]
F. Giudice, S. Missori, F. Murdolo, and A. Sili, "Metallurgical characterization of the interfaces in steel plates clad with austenitic steel or high ni alloys by hot rolling," Metals (Basel), vol. 10, no. 2, Feb. 2020.
DOI: 10.3390/met10020286
Google Scholar
[13]
H. Li, L. Zhang, B. Zhang, and Q. Zhang, "Microstructure characterization and mechanical properties of stainless steel clad plate," Materials, vol. 12, no. 3, Feb. 2019.
DOI: 10.3390/ma12030509
Google Scholar
[14]
H. Li, L. Zhang, B. Zhang, and Q. Zhang, "Effect of Heat Treatment on the Microstructure and Corrosion Resistance of Stainless/Carbon Steel Bimetal Plate," Advances in Materials Science and Engineering, vol. 2020, 2020.
DOI: 10.1155/2020/1280761
Google Scholar
[15]
Y. W. Li, H. T. Liu, Z. J. Wang, X. M. Zhang, and G. D. Wang, "Suppression of edge cracking and improvement of ductility in high borated stainless steel composite plate fabricated by hot-roll-bonding," Materials Science and Engineering: A, vol. 731, p.377–384, Jul. 2018.
DOI: 10.1016/j.msea.2018.06.039
Google Scholar
[16]
Z. Dhib, N. Guermazi, M. Gaspérini, and N. Haddar, "Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: Microstructure and mechanical properties before and after welding," Materials Science and Engineering: A, vol. 656, p.130–141, Feb. 2016.
DOI: 10.1016/j.msea.2015.12.088
Google Scholar
[17]
T. Gietzelt, V. Toth, and A. Huell, "Challenges of Diffusion Bonding of Different Classes of Stainless Steels," Feb. 01, 2018, Wiley-VCH Verlag.
DOI: 10.1002/adem.201700367
Google Scholar
[18]
B. X. Liu et al., "Interface characteristics and fracture behavior of hot rolled stainless steel clad plates with different vacuum degrees," Appl Surf Sci, vol. 463, p.121–131, Jan. 2019.
DOI: 10.1016/j.apsusc.2018.08.221
Google Scholar
[19]
Y. Yang, Z. Jiang, Y. Chen, X. Liu, J. Sun, and W. Wang, "Interfacial microstructure and strengthening mechanism of stainless steel/carbon steel laminated composite fabricated by liquid-solid bonding and hot rolling," Mater Charact, vol. 191, Sep. 2022.
DOI: 10.1016/j.matchar.2022.112122
Google Scholar
[20]
S. Wang, B. X. Liu, C. X. Chen, J. H. Feng, and F. X. Yin, "Microstructure, mechanical properties and interface bonding mechanism of hot-rolled stainless steel clad plates at different rolling reduction ratios," J Alloys Compd, vol. 766, p.517–526, Oct. 2018.
DOI: 10.1016/j.jallcom.2018.06.109
Google Scholar
[21]
B. X. Liu, Q. An, F. X. Yin, S. Wang, and C. X. Chen, "Interface formation and bonding mechanisms of hot-rolled stainless steel clad plate," Sep. 15, 2019, Springer New York LLC.
DOI: 10.1007/s10853-019-03581-x
Google Scholar
[22]
Y. Jing, Y. Qin, X. Zang, and Y. Li, "The bonding properties and interfacial morphologies of clad plate prepared by multiple passes hot rolling in a protective atmosphere," J Mater Process Technol, vol. 214, no. 8, p.1686–1695, 2014.
DOI: 10.1016/j.jmatprotec.2014.03.019
Google Scholar
[23]
E. Bjelajac, A. Skumavc, F. Smaili, G. Lojen, J. Predan, and T. Vuherer, "Experimental Study of Crack Propagation through Cladded 316L/S355 Steel Produced by the Hot-Roll Bonding Process," Metals (Basel), vol. 13, no. 7, Jul. 2023.
DOI: 10.3390/met13071273
Google Scholar
[24]
B. X. Liu et al., "Microstructure and mechanical properties of hot rolled stainless steel clad plate by heat treatment," Mater Chem Phys, vol. 216, p.460–467, Sep. 2018.
DOI: 10.1016/j.matchemphys.2018.06.033
Google Scholar
[25]
S. Wang et al., "Microstructure and Interface Fracture Characteristics of Hot-Rolled Stainless Steel Clad Plates by Adding Different Interlayers," Steel Res Int, vol. 91, no. 4, Apr. 2020.
DOI: 10.1002/srin.201900604
Google Scholar
[26]
Z. Lin et al., "The effect of ni interlayer on the hot-rolled and quenched stainless steel clad plate," Materials, vol. 13, no. 23, p.1–15, Dec. 2020.
DOI: 10.3390/ma13235455
Google Scholar