Impact of Aluminum in Comparison to Silicon on Liquid Metal Embrittlement of 3rd Generation AHSS

Article Preview

Abstract:

The impact of Si on Zn-induced liquid metal embrittlement (LME) in 3rd generation advanced high strength steels (AHSS) during resistance spot welding has been widely studied, but the effect of Al is rather unknown. This study investigates the substitution of Al for Si by analyzing two steels with the fixed C and Mn-contents of 0.2 and 3 wt.-% respectively. Si and Al-contents are both set to 1.4 wt.-%. To minimize microstructural effects, all steels were quenched and tempered before electro-galvanizing. The effects of Si and Al were examined using hot tensile testing (600 – 900 °C, in 50 K steps) on a Gleeble 3800, resistance spot welding with prolonged welding times, thermodynamic calculations with Thermo-calc® and dilatometry. Results indicate that the use of either Si or Al increases the LME-susceptibility but substituting Al for Si significantly reduces Zn-induced LME-cracking. In hot tensile testing, higher testing temperatures generally increase the steel’s vulnerability to LME. But comparing both alloying elements to one another, Si causes a higher LME-susceptibility.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 383)

Pages:

47-52

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Wohlecker, R. Henn, H. Wallenowitz, J. Leyers, Communication Module Mass Reduction, Forschungsgesellschaft Kraftfahrwesen mbH Aachen, Aachen, 2006.

Google Scholar

[2] D. K. Matlock, J. G. Speer, Processing Opportunities for New Advanced High Strength Sheet Steels, Materials and Manufacturing Processes 25 (2010) 7-13.

DOI: 10.1080/10426910903158272

Google Scholar

[3] D. K. Matlock, J. G. Speer, E. De Moor, P.J. Gibbs, Recent Developments in Advanced High Strength Sheet Steels for Automotive Applications: an Overview, Jestech 15 (2012) 1-12.

Google Scholar

[4] N. Fonstein, Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing and Properties, first ed., Springer International Publishing, Cham, 2015.

DOI: 10.1007/978-3-319-19165-2_7

Google Scholar

[5] D. Bhattacharya, L. Cho, E. van der Aa, A. Pichler, N. Pottore, H. Ghassemi-Armaki, K.O. Findley, J.G. Speer, Influence of the starting microstructure of an advanced high strength steel on the characteristics of Zn-assisted liquid metal embrittlement, Materials Science and Engineering: A 804 (2021), 140391.

DOI: 10.1016/j.msea.2020.140391

Google Scholar

[6] M. Wallner, K. Steineder, R. Schneider, M. Gruber, M. Arndt, C. Sommitsch, Unraveling the impact of the substitution of Si by Al on liquid metal embrittlement behavior of 3rd generation AHSS, Materials Science and Engineering: A 899 (2024), 146466.

DOI: 10.1016/j.msea.2024.146446

Google Scholar

[7] D. Bhattacharya, L. Cho, J. Colburn, D. Smith, D. Marshall, E. van der Aa, A. Pichler, H. Ghassemi-Armaki, N. Pottore, K. O. Findley, J. G. Speer, Influence of selected alloying variations on liquid metal embrittlement susceptibility of quenched and partitioned steels, Materials & Design 224 (2022) 11356.

DOI: 10.1016/j.matdes.2022.111356

Google Scholar

[8] D. Bhattacharya, L. Cho, D. Marshall, M. Walker, E. van der Aa, A. Pichler, H. Ghassemi-Armaki, K. O. Findley, J. G. Speer, Liquid metal embrittlement susceptibility of two Zn-coated advanced high strength steel of similar strengths, Materials Science and Engineering: A 823 (2021) 141569.

DOI: 10.1016/j.msea.2021.141569

Google Scholar

[9] S.-C. Han, D. F. Sanchez, D. Grolimund, S.-H. Uhm, D.-Y. Choi, H.-C. Jeong, T.-S. Jun, Role of silicon on formation and growth of intermetallic phases during rapid Fe-Zn alloying reaction, materials Today Advances 18 (2023) 100368.

DOI: 10.1016/j.mtadv.2023.100368

Google Scholar

[10] S.-H. Hong, J.-H. Kang, D. Kim, S.-J. Kim, Si effect on Zn-assisted liquid metal embrittlement in Zn-coated TWIP-steels: Importance of Fe-Zn alloying reaction, Surface and Coating Technology 393 (2020) 125809.

DOI: 10.1016/j.surfcoat.2020.125809

Google Scholar

[11] F. Abdiyan, J. R. McDermid, A. Macwan, B. Pourbarahi, M. S. de Miera, B. Langelier, H. S. Zurob, Effect of Si concentration on the liquid metal embrittlement susceptibility of advanced high strength steels, Materialia 40 (2025) 102390.

DOI: 10.1016/j.mtla.2025.102390

Google Scholar

[12] H. Xue, T. N. Baker, Influence of aluminium on carbide precipitation in low carbon microalloyed steels, Materials Science and Technology 9 (1993) 424-429.

DOI: 10.1179/mst.1993.9.5.424

Google Scholar

[13] J. Colburn, J. G. Speer, J. Klemm-Toole, Effect of substrate Al content on liquid metal embrittlement susceptibility in quenched and partitioned steels, Materials Science and Engineering A 922 (2025) 147636.

DOI: 10.1016/j.msea.2024.147636

Google Scholar

[14] R.R. Mohanty, O. A. Girina, N. M. Fonstein, Effect of Heating Rate on the Austenite Formation in Low Carbon High Strength Steels Annealed in the Intercritical Region, Metall Mater Trans A 42 (2011) 3680-2690.

DOI: 10.1007/s11661-011-0753-5

Google Scholar

[15] M. H. Razmpoosh, E. Biro, D. L. Chen, F. Goodwin, Y. Zhou, Liquid metal embrittlement in laser lap joining of TWIP and medium manganese TRIP steel: The role of stress and grain boundaries, Materials Characterization 145 (2018) 627-633.

DOI: 10.1016/j.matchar.2018.09.018

Google Scholar

[16] A. Ghatei-Kalashami, E. Ghassemali, C. DiGiovanni, F. Goodwin, N. Zhou, Liquid metal embrittlement cracking behavior in iron-zinc (Fe/Zn) couple: Comparison of ferritic and austenitic microstructures, Materials Letters 324 (2022) 132780.

DOI: 10.1016/j.matlet.2022.132780

Google Scholar

[17] E. van der Aa, The role of the material in the LME-sensitivity of zinc-coated AHSS for Automotive applications, in: 6th International Conference on Steels in Cars and Trucks, 2022.

Google Scholar