[1]
R. Wohlecker, R. Henn, H. Wallenowitz, J. Leyers, Communication Module Mass Reduction, Forschungsgesellschaft Kraftfahrwesen mbH Aachen, Aachen, 2006.
Google Scholar
[2]
D. K. Matlock, J. G. Speer, Processing Opportunities for New Advanced High Strength Sheet Steels, Materials and Manufacturing Processes 25 (2010) 7-13.
DOI: 10.1080/10426910903158272
Google Scholar
[3]
D. K. Matlock, J. G. Speer, E. De Moor, P.J. Gibbs, Recent Developments in Advanced High Strength Sheet Steels for Automotive Applications: an Overview, Jestech 15 (2012) 1-12.
Google Scholar
[4]
N. Fonstein, Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing and Properties, first ed., Springer International Publishing, Cham, 2015.
DOI: 10.1007/978-3-319-19165-2_7
Google Scholar
[5]
D. Bhattacharya, L. Cho, E. van der Aa, A. Pichler, N. Pottore, H. Ghassemi-Armaki, K.O. Findley, J.G. Speer, Influence of the starting microstructure of an advanced high strength steel on the characteristics of Zn-assisted liquid metal embrittlement, Materials Science and Engineering: A 804 (2021), 140391.
DOI: 10.1016/j.msea.2020.140391
Google Scholar
[6]
M. Wallner, K. Steineder, R. Schneider, M. Gruber, M. Arndt, C. Sommitsch, Unraveling the impact of the substitution of Si by Al on liquid metal embrittlement behavior of 3rd generation AHSS, Materials Science and Engineering: A 899 (2024), 146466.
DOI: 10.1016/j.msea.2024.146446
Google Scholar
[7]
D. Bhattacharya, L. Cho, J. Colburn, D. Smith, D. Marshall, E. van der Aa, A. Pichler, H. Ghassemi-Armaki, N. Pottore, K. O. Findley, J. G. Speer, Influence of selected alloying variations on liquid metal embrittlement susceptibility of quenched and partitioned steels, Materials & Design 224 (2022) 11356.
DOI: 10.1016/j.matdes.2022.111356
Google Scholar
[8]
D. Bhattacharya, L. Cho, D. Marshall, M. Walker, E. van der Aa, A. Pichler, H. Ghassemi-Armaki, K. O. Findley, J. G. Speer, Liquid metal embrittlement susceptibility of two Zn-coated advanced high strength steel of similar strengths, Materials Science and Engineering: A 823 (2021) 141569.
DOI: 10.1016/j.msea.2021.141569
Google Scholar
[9]
S.-C. Han, D. F. Sanchez, D. Grolimund, S.-H. Uhm, D.-Y. Choi, H.-C. Jeong, T.-S. Jun, Role of silicon on formation and growth of intermetallic phases during rapid Fe-Zn alloying reaction, materials Today Advances 18 (2023) 100368.
DOI: 10.1016/j.mtadv.2023.100368
Google Scholar
[10]
S.-H. Hong, J.-H. Kang, D. Kim, S.-J. Kim, Si effect on Zn-assisted liquid metal embrittlement in Zn-coated TWIP-steels: Importance of Fe-Zn alloying reaction, Surface and Coating Technology 393 (2020) 125809.
DOI: 10.1016/j.surfcoat.2020.125809
Google Scholar
[11]
F. Abdiyan, J. R. McDermid, A. Macwan, B. Pourbarahi, M. S. de Miera, B. Langelier, H. S. Zurob, Effect of Si concentration on the liquid metal embrittlement susceptibility of advanced high strength steels, Materialia 40 (2025) 102390.
DOI: 10.1016/j.mtla.2025.102390
Google Scholar
[12]
H. Xue, T. N. Baker, Influence of aluminium on carbide precipitation in low carbon microalloyed steels, Materials Science and Technology 9 (1993) 424-429.
DOI: 10.1179/mst.1993.9.5.424
Google Scholar
[13]
J. Colburn, J. G. Speer, J. Klemm-Toole, Effect of substrate Al content on liquid metal embrittlement susceptibility in quenched and partitioned steels, Materials Science and Engineering A 922 (2025) 147636.
DOI: 10.1016/j.msea.2024.147636
Google Scholar
[14]
R.R. Mohanty, O. A. Girina, N. M. Fonstein, Effect of Heating Rate on the Austenite Formation in Low Carbon High Strength Steels Annealed in the Intercritical Region, Metall Mater Trans A 42 (2011) 3680-2690.
DOI: 10.1007/s11661-011-0753-5
Google Scholar
[15]
M. H. Razmpoosh, E. Biro, D. L. Chen, F. Goodwin, Y. Zhou, Liquid metal embrittlement in laser lap joining of TWIP and medium manganese TRIP steel: The role of stress and grain boundaries, Materials Characterization 145 (2018) 627-633.
DOI: 10.1016/j.matchar.2018.09.018
Google Scholar
[16]
A. Ghatei-Kalashami, E. Ghassemali, C. DiGiovanni, F. Goodwin, N. Zhou, Liquid metal embrittlement cracking behavior in iron-zinc (Fe/Zn) couple: Comparison of ferritic and austenitic microstructures, Materials Letters 324 (2022) 132780.
DOI: 10.1016/j.matlet.2022.132780
Google Scholar
[17]
E. van der Aa, The role of the material in the LME-sensitivity of zinc-coated AHSS for Automotive applications, in: 6th International Conference on Steels in Cars and Trucks, 2022.
Google Scholar