[1]
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Mater. 117 (2016) 371–392.
DOI: 10.1016/j.actamat.2016.07.019
Google Scholar
[2]
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – Process, structure and properties, Prog. Mater. Sci. 92 (2018) 112–224.
DOI: 10.1016/j.pmatsci.2017.10.001
Google Scholar
[3]
M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja, F. Martina, Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints, CIRP Ann. 65 (2016) 737–760.
DOI: 10.1016/j.cirp.2016.05.004
Google Scholar
[4]
R. Ding, H. Yang, S. Li, G. Hu, J. Mo, M. Chu, S. Paddea, S. Zhang, P. Zhang, Z. Liu, J. Wei, Failure analysis of H13 steel die for high pressure die casting Al alloy, Eng. Fail. Anal. 124 (2021) 105330.
DOI: 10.1016/j.engfailanal.2021.105330
Google Scholar
[5]
M. Wang, W. Li, Y. Wu, S. Li, C. Cai, S. Wen, Q. Wei, Y. Shi, F. Ye, Z. Chen, High-Temperature Properties and Microstructural Stability of the AISI H13 Hot-Work Tool Steel Processed by Selective Laser Melting, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 50 (2019) 531–542.
DOI: 10.1007/s11663-018-1442-1
Google Scholar
[6]
R.A. Savrai, D. V. Toporova, T.M. Bykova, Improving the quality of AISI H13 tool steel produced by selective laser melting, Opt. Laser Technol. 152 (2022) 108128.
DOI: 10.1016/j.optlastec.2022.108128
Google Scholar
[7]
F. Großwendt, A. Röttger, A. Strauch, A. Chehreh, V. Uhlenwinkel, R. Fechte-Heinen, F. Walther, S. Weber, W. Theisen, Additive manufacturing of a carbon-martensitic hot-work tool steel using a powder mixture – Microstructure, post-processing, mechanical properties, Mater. Sci. Eng. A. 827 (2021) 142038.
DOI: 10.1016/j.msea.2021.142038
Google Scholar
[8]
R. Dörfert, J. Zhang, B. Clausen, H. Freiße, J. Schumacher, F. Vollertsen, Comparison of the fatigue strength between additively and conventionally fabricated tool steel 1.2344, Addit. Manuf. 27 (2019) 217–223.
DOI: 10.1016/j.addma.2019.01.010
Google Scholar
[9]
M. Steinhauser, E. Sert, L. Hitzler, A. Öchsner, M. Merkel, Fatigue behavior of the additively manufactured tool steel H13 after surface treatment using different post-processing methods, Prakt. Metallogr. Metallogr. 57 (2020) 140–167.
DOI: 10.3139/147.110599
Google Scholar
[10]
M. Pellizzari, B. AlMangour, M. Benedetti, S. Furlani, D. Grzesiak, F. Deirmina, Effects of building direction and defect sensitivity on the fatigue behavior of additively manufactured H13 tool steel, Theor. Appl. Fract. Mech. 108 (2020) 102634.
DOI: 10.1016/j.tafmec.2020.102634
Google Scholar
[11]
F. Deirmina, N. Peghini, B. AlMangour, D. Grzesiak, M. Pellizzari, Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing, Mater. Sci. Eng. A. 753 (2019) 109–121.
DOI: 10.1016/j.msea.2019.03.027
Google Scholar
[12]
L.X. Han, Y. Wang, S.F. Liu, Z.H. Zhang, W. Liu, X. Yang, D.S. Ma, J. Zhou, Y.K. Wei, Effect of heat treatment on microstructural evolution, mechanical properties and tribological properties of H13 steel prepared using selective laser melting, J. Iron Steel Res. Int. 31 (2024) 1246–1259.
DOI: 10.1007/s42243-023-01065-6
Google Scholar
[13]
S. Li, S. Yang, Y. Zhao, Y. Dong, Z. Wang, 2 GPa H13 steels fabricated by laser powder bed fusion and tempering: Microstructure, tensile property and strengthening mechanism, Mater. Sci. Eng. A. 888 (2023) 145803.
DOI: 10.1016/j.msea.2023.145803
Google Scholar
[14]
S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, H.J. Maier, On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, Int. J. Fatigue. 48 (2013) 300–307.
DOI: 10.1016/j.ijfatigue.2012.11.011
Google Scholar
[15]
L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J.P. Kruth, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Mater. 58 (2010) 3303–3312.
DOI: 10.1016/j.actamat.2010.02.004
Google Scholar
[16]
G. Kasperovich, J. Hausmann, Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting, J. Mater. Process. Technol. 220 (2015) 202–214. .
DOI: 10.1016/j.jmatprotec.2015.01.025
Google Scholar
[17]
H. Mughrabi, Specific features and mechanisms of fatigue in the ultrahigh-cycle regime, Int. J. Fatigue. 28 (2006) 1501–1508.
DOI: 10.1016/j.ijfatigue.2005.05.018
Google Scholar
[18]
A. Hamada, M. Jaskari, T. Gundgire, A. Järvenpää, Enhancement and underlying fatigue mechanisms of laser powder bed fusion additive-manufactured 316L stainless steel, Mater. Sci. Eng. A. 873 (2023) 145021.
DOI: 10.1016/j.msea.2023.145021
Google Scholar