Enhancing Fatigue Performance of Additively Manufactured H13 Tool Steel through Surface Finishing Processes

Article Preview

Abstract:

This study investigates the fatigue performance of additively manufactured H13 hot work tool steel (AM-H13 TS) produced using the laser powder bed fusion (L-PBF) process with two distinct build orientations: vertical (V-BO) and diagonal with 45° (D-BO). A fixed volumetric energy density of 57.3 J/mm3 was employed for fabrication. The study compares the as-built AMH13 TS to its surface-finished counterpart, focusing on fatigue life and damage under fully reversed tension-compression loading conditions. The surface finishing processes involved electropolishing using commercial DLyte 100HF+ equipment, followed by mechanical surface refinement. The surface topography and roughness characteristics of the as-built and post-polished specimens were comprehensively analyzed using laser confocal scanning microscopy (LCSM). Scanning electron microscopy (SEM) was utilized to examine the microstructural features and fatigue mechanisms. The as-built AM-H13 TS exhibited high surface roughness due to the presence of satellites and partially melted particles, which are inherent to the L-PBF process. The surface-finishing approach substantially mitigated these surface imperfections, resulting in significantly improved surface quality and reduced roughness. As a result, the fatigue performance of surface-finished AM-H13 TS showed remarkable enhancement. The fatigue limit increased fivefold, from 100 MPa in the as-built condition to 500 MPa after surface finishing. SEM analysis revealed that the improved fatigue strength was primarily attributed to the reduction in surface roughness and the elimination of surface flaws, which acted as crack initiation sites in the as-built condition.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 383)

Pages:

67-74

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Mater. 117 (2016) 371–392.

DOI: 10.1016/j.actamat.2016.07.019

Google Scholar

[2] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – Process, structure and properties, Prog. Mater. Sci. 92 (2018) 112–224.

DOI: 10.1016/j.pmatsci.2017.10.001

Google Scholar

[3] M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja, F. Martina, Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints, CIRP Ann. 65 (2016) 737–760.

DOI: 10.1016/j.cirp.2016.05.004

Google Scholar

[4] R. Ding, H. Yang, S. Li, G. Hu, J. Mo, M. Chu, S. Paddea, S. Zhang, P. Zhang, Z. Liu, J. Wei, Failure analysis of H13 steel die for high pressure die casting Al alloy, Eng. Fail. Anal. 124 (2021) 105330.

DOI: 10.1016/j.engfailanal.2021.105330

Google Scholar

[5] M. Wang, W. Li, Y. Wu, S. Li, C. Cai, S. Wen, Q. Wei, Y. Shi, F. Ye, Z. Chen, High-Temperature Properties and Microstructural Stability of the AISI H13 Hot-Work Tool Steel Processed by Selective Laser Melting, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 50 (2019) 531–542.

DOI: 10.1007/s11663-018-1442-1

Google Scholar

[6] R.A. Savrai, D. V. Toporova, T.M. Bykova, Improving the quality of AISI H13 tool steel produced by selective laser melting, Opt. Laser Technol. 152 (2022) 108128.

DOI: 10.1016/j.optlastec.2022.108128

Google Scholar

[7] F. Großwendt, A. Röttger, A. Strauch, A. Chehreh, V. Uhlenwinkel, R. Fechte-Heinen, F. Walther, S. Weber, W. Theisen, Additive manufacturing of a carbon-martensitic hot-work tool steel using a powder mixture – Microstructure, post-processing, mechanical properties, Mater. Sci. Eng. A. 827 (2021) 142038.

DOI: 10.1016/j.msea.2021.142038

Google Scholar

[8] R. Dörfert, J. Zhang, B. Clausen, H. Freiße, J. Schumacher, F. Vollertsen, Comparison of the fatigue strength between additively and conventionally fabricated tool steel 1.2344, Addit. Manuf. 27 (2019) 217–223.

DOI: 10.1016/j.addma.2019.01.010

Google Scholar

[9] M. Steinhauser, E. Sert, L. Hitzler, A. Öchsner, M. Merkel, Fatigue behavior of the additively manufactured tool steel H13 after surface treatment using different post-processing methods, Prakt. Metallogr. Metallogr. 57 (2020) 140–167.

DOI: 10.3139/147.110599

Google Scholar

[10] M. Pellizzari, B. AlMangour, M. Benedetti, S. Furlani, D. Grzesiak, F. Deirmina, Effects of building direction and defect sensitivity on the fatigue behavior of additively manufactured H13 tool steel, Theor. Appl. Fract. Mech. 108 (2020) 102634.

DOI: 10.1016/j.tafmec.2020.102634

Google Scholar

[11] F. Deirmina, N. Peghini, B. AlMangour, D. Grzesiak, M. Pellizzari, Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing, Mater. Sci. Eng. A. 753 (2019) 109–121.

DOI: 10.1016/j.msea.2019.03.027

Google Scholar

[12] L.X. Han, Y. Wang, S.F. Liu, Z.H. Zhang, W. Liu, X. Yang, D.S. Ma, J. Zhou, Y.K. Wei, Effect of heat treatment on microstructural evolution, mechanical properties and tribological properties of H13 steel prepared using selective laser melting, J. Iron Steel Res. Int. 31 (2024) 1246–1259.

DOI: 10.1007/s42243-023-01065-6

Google Scholar

[13] S. Li, S. Yang, Y. Zhao, Y. Dong, Z. Wang, 2 GPa H13 steels fabricated by laser powder bed fusion and tempering: Microstructure, tensile property and strengthening mechanism, Mater. Sci. Eng. A. 888 (2023) 145803.

DOI: 10.1016/j.msea.2023.145803

Google Scholar

[14] S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, H.J. Maier, On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, Int. J. Fatigue. 48 (2013) 300–307.

DOI: 10.1016/j.ijfatigue.2012.11.011

Google Scholar

[15] L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J.P. Kruth, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Mater. 58 (2010) 3303–3312.

DOI: 10.1016/j.actamat.2010.02.004

Google Scholar

[16] G. Kasperovich, J. Hausmann, Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting, J. Mater. Process. Technol. 220 (2015) 202–214. .

DOI: 10.1016/j.jmatprotec.2015.01.025

Google Scholar

[17] H. Mughrabi, Specific features and mechanisms of fatigue in the ultrahigh-cycle regime, Int. J. Fatigue. 28 (2006) 1501–1508.

DOI: 10.1016/j.ijfatigue.2005.05.018

Google Scholar

[18] A. Hamada, M. Jaskari, T. Gundgire, A. Järvenpää, Enhancement and underlying fatigue mechanisms of laser powder bed fusion additive-manufactured 316L stainless steel, Mater. Sci. Eng. A. 873 (2023) 145021.

DOI: 10.1016/j.msea.2023.145021

Google Scholar