[1]
M. Anderson, A.-L. Thielin, F. Bridier, P. Bocher, J. Savoie, δ Phase precipitation in Inconel 718 and associated mechanical properties, Materials Science and Engineering: A 679 (2017) 48–55.
DOI: 10.1016/j.msea.2016.09.114
Google Scholar
[2]
A. Balan, M. Perez, T. Chaise, S. Cazottes, D. Bardel, F. Corpace, F. Pichot, A. Deschamps, F. de Geuser, D. Nelias, Precipitation of γ" in Inconel 718 alloy from microstructure to mechanical properties, Materialia 20 (2021) 101187.
DOI: 10.2139/ssrn.3859738
Google Scholar
[3]
A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J.Y. Guédou, J.F. Uginet, P. Héritier, Gamma double prime precipitation kinetic in Alloy 718, Materials Science and Engineering: A 486 (2008) 117–122.
DOI: 10.1016/j.msea.2007.08.046
Google Scholar
[4]
J. Ding, S. Xue, Z. Shang, J. Li, Y. Zhang, R. Su, T. Niu, H. Wang, X. Zhang, Characterization of precipitation in gradient Inconel 718 superalloy, Materials Science and Engineering: A 804 (2021) 140718.
DOI: 10.1016/j.msea.2020.140718
Google Scholar
[5]
U. Krupp, K. Wackermann, H.-J. Christ, M.-H. Colliander, K. Stiller, Intergranular Oxidation Effects during Dwell-Time Fatigue of High-Strength Superalloys, Oxidation of Metals 88 (2017) 3-14
DOI: 10.1007/s11085-016-9707-z
Google Scholar
[6]
H.-J. Christ, K. Wackerman, U. Krupp, On the mechanism of dynamic embrittlement and its effect on fatigue crack propagation in IN718 at 650°C, Procedia Structural Integrity 2 (2016) 557–564.
DOI: 10.1016/j.prostr.2016.06.072
Google Scholar
[7]
U. Krupp, Dynamic Embrittlement — Time–dependent Quasi–brittle Intergranular Fracture at High Temperatures, International Materials Reviews 50 (2005) 83–97.
DOI: 10.1179/174328005x14320
Google Scholar
[8]
J. Pfaendtner, C. McMahon Jr, Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures—an example of dynamic embrittlement, Acta Materialia 49 (2001) 3369–3377.
DOI: 10.1016/s1359-6454(01)00005-2
Google Scholar
[9]
J. Rösler, S. Müller, Protection of Ni-base superalloys against stress accelerated grain boundary oxidation (SAGBO) by grain boundary chemistry modification, Scripta Materialia 40 (1998) 257–263.
DOI: 10.1016/s1359-6462(98)00375-3
Google Scholar
[10]
X. Liu, B. Kang, W. Carpenter, E. Barbero, Investigation of the crack growth behavior of Inconel 718 by high temperature Moiré interferometry, J Mater Sci 39 (2004) 1967–1973.
DOI: 10.1023/b:jmsc.0000017758.91184.ac
Google Scholar
[11]
C. Baumann, R. Ghassemizadeh, T. Seifert, D. Urban: Atomistic-informed traction-separation-laws for the assessment of intergranular cracking in microstructure-based finite-element models. MaterialsWeek, Frankfurt, 4.4.(2025)
Google Scholar
[12]
B. Sun, T. Zhang, J. Shi, B. Wang, X. Zhang, Microstructural evolution during exposure in air and oxidation behavior of a nickel-based superalloy, Vacuum 183 (2021) 109801.
DOI: 10.1016/j.vacuum.2020.109801
Google Scholar
[13]
M. Taylor, S. Cruchley, H. Evans, An overview of the oxidation of Ni-based superalloys for turbine disc applications: surface condition, applied load and mechanical performance, Materials at High Temperatures 33 (2016) 465–475.
DOI: 10.1080/09603409.2016.1171952
Google Scholar
[14]
S. Madhusudan, E. Epifano, J. Favergeon, T. Sanviemvongsak, D. Maréchal, D. Monceau, High Temperature Intergranular Oxidation of Nickel Based Superalloy Inconel 718, High Temperature Corrosion of mater. 101 (2024) 873–884.
DOI: 10.1007/s11085-024-10260-z
Google Scholar
[15]
K.A. Al-hatab, M.A. Al-bukhaiti, U. Krupp, M. Kantehm, Cyclic Oxidation Behavior of IN 718 Superalloy in Air at High Temperatures, Oxid Met 75 (2011) 209–228.
DOI: 10.1007/s11085-010-9230-6
Google Scholar