Multi-Scale Investigation of Oxygen-Induced Damage in Nickel-Based Superalloy Alloy 718

Article Preview

Abstract:

Understanding damage mechanisms across scales is crucial to ensure the structural integrity of nickel-based superalloy components under demanding conditions. This study highlights key aspects of a multi-scale experimental approach for analyzing oxygen-induced cracking in Alloy 718. Microcantilever bending tests on specific grain boundaries were combined with corrosion tests and detailed analyses using high-resolution scanning electron microscopy, electron backscatter diffraction, and energy-dispersive X-ray spectroscopy. The results suggest that susceptibility to oxidative attack is significantly impacted by the type of grain boundary, emphasising the importance of local crystallography in oxygen diffusion and elemental redistribution. By bridging local microstructural features with global mechanical response, the presented multi-scale approach allows the parameterization of physically based material models and identifies grain boundary engineering as a promising strategy for improving damage tolerance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 384)

Pages:

57-62

Citation:

Online since:

January 2026

Funder:

The publication of this article was funded by the RWTH Aachen University 10.13039/501100007210

Export:

Share:

Citation:

* - Corresponding Author

[1] M. Anderson, A.-L. Thielin, F. Bridier, P. Bocher, J. Savoie, δ Phase precipitation in Inconel 718 and associated mechanical properties, Materials Science and Engineering: A 679 (2017) 48–55.

DOI: 10.1016/j.msea.2016.09.114

Google Scholar

[2] A. Balan, M. Perez, T. Chaise, S. Cazottes, D. Bardel, F. Corpace, F. Pichot, A. Deschamps, F. de Geuser, D. Nelias, Precipitation of γ" in Inconel 718 alloy from microstructure to mechanical properties, Materialia 20 (2021) 101187.

DOI: 10.2139/ssrn.3859738

Google Scholar

[3] A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J.Y. Guédou, J.F. Uginet, P. Héritier, Gamma double prime precipitation kinetic in Alloy 718, Materials Science and Engineering: A 486 (2008) 117–122.

DOI: 10.1016/j.msea.2007.08.046

Google Scholar

[4] J. Ding, S. Xue, Z. Shang, J. Li, Y. Zhang, R. Su, T. Niu, H. Wang, X. Zhang, Characterization of precipitation in gradient Inconel 718 superalloy, Materials Science and Engineering: A 804 (2021) 140718.

DOI: 10.1016/j.msea.2020.140718

Google Scholar

[5] U. Krupp, K. Wackermann, H.-J. Christ, M.-H. Colliander, K. Stiller, Intergranular Oxidation Effects during Dwell-Time Fatigue of High-Strength Superalloys, Oxidation of Metals 88 (2017) 3-14

DOI: 10.1007/s11085-016-9707-z

Google Scholar

[6] H.-J. Christ, K. Wackerman, U. Krupp, On the mechanism of dynamic embrittlement and its effect on fatigue crack propagation in IN718 at 650°C, Procedia Structural Integrity 2 (2016) 557–564.

DOI: 10.1016/j.prostr.2016.06.072

Google Scholar

[7] U. Krupp, Dynamic Embrittlement — Time–dependent Quasi–brittle Intergranular Fracture at High Temperatures, International Materials Reviews 50 (2005) 83–97.

DOI: 10.1179/174328005x14320

Google Scholar

[8] J. Pfaendtner, C. McMahon Jr, Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures—an example of dynamic embrittlement, Acta Materialia 49 (2001) 3369–3377.

DOI: 10.1016/s1359-6454(01)00005-2

Google Scholar

[9] J. Rösler, S. Müller, Protection of Ni-base superalloys against stress accelerated grain boundary oxidation (SAGBO) by grain boundary chemistry modification, Scripta Materialia 40 (1998) 257–263.

DOI: 10.1016/s1359-6462(98)00375-3

Google Scholar

[10] X. Liu, B. Kang, W. Carpenter, E. Barbero, Investigation of the crack growth behavior of Inconel 718 by high temperature Moiré interferometry, J Mater Sci 39 (2004) 1967–1973.

DOI: 10.1023/b:jmsc.0000017758.91184.ac

Google Scholar

[11] C. Baumann, R. Ghassemizadeh, T. Seifert, D. Urban: Atomistic-informed traction-separation-laws for the assessment of intergranular cracking in microstructure-based finite-element models. MaterialsWeek, Frankfurt, 4.4.(2025)

Google Scholar

[12] B. Sun, T. Zhang, J. Shi, B. Wang, X. Zhang, Microstructural evolution during exposure in air and oxidation behavior of a nickel-based superalloy, Vacuum 183 (2021) 109801.

DOI: 10.1016/j.vacuum.2020.109801

Google Scholar

[13] M. Taylor, S. Cruchley, H. Evans, An overview of the oxidation of Ni-based superalloys for turbine disc applications: surface condition, applied load and mechanical performance, Materials at High Temperatures 33 (2016) 465–475.

DOI: 10.1080/09603409.2016.1171952

Google Scholar

[14] S. Madhusudan, E. Epifano, J. Favergeon, T. Sanviemvongsak, D. Maréchal, D. Monceau, High Temperature Intergranular Oxidation of Nickel Based Superalloy Inconel 718, High Temperature Corrosion of mater. 101 (2024) 873–884.

DOI: 10.1007/s11085-024-10260-z

Google Scholar

[15] K.A. Al-hatab, M.A. Al-bukhaiti, U. Krupp, M. Kantehm, Cyclic Oxidation Behavior of IN 718 Superalloy in Air at High Temperatures, Oxid Met 75 (2011) 209–228.

DOI: 10.1007/s11085-010-9230-6

Google Scholar