Electrochemical Synthesis of Ni-Co-W-Zr(P) Quinary Medium Entropy Alloy for Enhanced Hydrogen Evolution Reaction

Article Preview

Abstract:

Over the course of history, the principles of alloying have evolved, with the past fifteen years witnessing the rise of high-entropy alloying theory, which has fundamentally transformed our approach to alloy design. Developing cost-effective and efficient electrocatalysts is critical for large-scale hydrogen production via water splitting. The Ni-Co-W-Zr-P alloy coating offers a promising alternative to noble metal-based electrocatalysts. In this study, we developed a Co-W-Zr-incorporated Ni(P) coating using the electroless plating method. The integration of Co-W-Zr into the Ni(P) matrix notably enhances the number of active sites during the hydrogen evolution reaction. Electrochemical studies revealed a low overpotential of 413.5 mV of the coating when the current density is at −10 mA cm−2. Kinetic parameters were analyzed using EIS measurements, and a potential mechanism for the hydrogen evolution reaction (HER) was proposed. The coating demonstrated exceptional stability, with no surface degradation even after prolonged electrochemical testing, making it suitable for large or irregularly shaped electrodes required in industrial applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 384)

Pages:

17-23

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature 534 (2016) 227-230.

DOI: 10.1038/nature17981

Google Scholar

[2] B. Gludovatz, et al., A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014) 1153-1158.

DOI: 10.1126/science.1254581

Google Scholar

[3] H. Sun, J. Liu, Hot corrosion of Fe-Cr-Ni multi-principal element alloys in Na2SO4+25%NaCl mixture salts at 700-900°C, Intermetallics 166 (2024) 108203.

DOI: 10.1016/j.intermet.2024.108203

Google Scholar

[4] Z. Zhou, B. Liu, W. Guo, A. Fu, H. Duan, W. Li, Corrosion behavior and mechanism of FeCrNi medium-entropy alloy prepared by powder metallurgy, J. Alloy. Compd. 867 (2021) 159094.

DOI: 10.1016/j.jallcom.2021.159094

Google Scholar

[5] G.Y. Koga, N. Birbilis, G. Zepon, C.S. Kiminami, W.J. Botta, M. Kaufman, A. Clarke, F.G. Coury, Corrosion resistant and tough multi-principal element Cr-Co-Ni alloys, J. Alloy. Compd. 884 (2021) 161107.

DOI: 10.1016/j.jallcom.2021.161107

Google Scholar

[6] D.B. Miracle, O.N. Senkov, A critical review of high-entropy alloys and related concepts, Acta Mater. 122 (2017) 448-511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[7] A. Fu, B. Liu, Z. Li, B. Wang, Y. Cao, Y. Liu, Dynamic deformation behavior of a FeCrNi medium-entropy alloy, J. Mater. Sci. Technol. 100 (2022) 120-128.

DOI: 10.1016/j.jmst.2021.05.049

Google Scholar

[8] J. Peng, B. Liu, W. Li, P.K. Liaw, J. Li, Q. Fang, Data-driven investigation of microstructure and surface integrity in additively manufactured multi-principal element alloys, J. Alloy. Compd. 937 (2023) 168431.

DOI: 10.1016/j.jallcom.2022.168431

Google Scholar

[9] A. Fu, B. Liu, F. Tan, Y. Cao, J. Li, B. Liu, Q. Fang, P.K. Liaw, Y. Liu, Structural damage and phase stability of cobalt-free FeCrNi medium-entropy alloy under high-fluence ion irradiation, Appl. Surf. Sci. (2024) 159669.

DOI: 10.1016/j.apsusc.2024.159669

Google Scholar

[10] A. Fu, B. Liu, W. Lu, B. Liu, J. Li, Q. Fang, Z. Li, Y. Liu, A novel supersaturated medium-entropy alloy with superior tensile properties and corrosion resistance, Scr. Mater. 186 (2020) 381-386.

DOI: 10.1016/j.scriptamat.2020.05.023

Google Scholar

[11] J. Wang, W. Li, H. Yang, H. Huang, S. Ji, J. Ruan, Z. Liu, Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steels in H2SO4 and NaOH solutions, Corros. Sci. 177 (2020) 108973.

DOI: 10.1016/j.corsci.2020.108973

Google Scholar

[12] Q. Wang, J. Xie, Y. Qin, Y. Kong, S. Zhou, Q. Li, Q. Sun, B. Chen, P. Xie, Z. Wei, S. Zhao, Recent progress in high-entropy alloy electrocatalysts for hydrogen evolution reaction, Adv. Mater. Interfaces 11 (2024) 2301020.

DOI: 10.1002/admi.202301020

Google Scholar

[13] M. Unni, J. Sudagar, Preparation of electroless deposition of NiTiZr(P) quaternary alloy and their properties, Heliyon 10(17) (2024) e37363.

DOI: 10.1016/j.heliyon.2024.e37363

Google Scholar

[14] M. Unni, J. Sudagar, Ni-Co-W-Zr(P) quinary-based medium entropy alloy achieved by an electrochemical route and its properties, J. Electrochem. Soc. 172 (2025) 012502.

DOI: 10.1149/1945-7111/ada2bb

Google Scholar

[15] J. Sudagar, J. Lian, X. Chen, P. Lang, Y. Liang, High corrosion resistance of electroless Ni-P with chromium-free conversion pre-treatments on AZ91D magnesium alloy, Trans. Nonferrous Met. Soc. China 21(4) (2011) 921-928.

DOI: 10.1016/s1003-6326(11)60802-9

Google Scholar

[16] B.A. Boukamp, A linear Kronig‐Kramers transform test for immittance data validation, J. Electrochem. Soc. 142(6) (1995) 1885-1894.

DOI: 10.1149/1.2044210

Google Scholar

[17] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edition, Prentice Hall, 2001.

Google Scholar

[18] J. Wang, et al., Recent advances in transition-metal-based electrocatalysts for alkaline hydrogen evolution reaction, Adv. Funct. Mater. 30(27) (2020) 2002293.

Google Scholar

[19] T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion, Scientific Reports 5(1) (2015) 13801.

DOI: 10.1038/srep13801

Google Scholar

[20] O. van der Heijden, et al., Tafel slope plot as a tool to analyze electrocatalytic reactions, ACS Energy Letters 9(4) (2024) 1871-1879.

DOI: 10.1021/acsenergylett.4c00266

Google Scholar

[21] C. Wan, et al., Unraveling and resolving the inconsistencies in tafel analysis for hydrogen evolution reactions, ACS Central Science 10(3) (2024) 658-665.

DOI: 10.1021/acscentsci.3c01439

Google Scholar