[1]
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature 534 (2016) 227-230.
DOI: 10.1038/nature17981
Google Scholar
[2]
B. Gludovatz, et al., A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014) 1153-1158.
DOI: 10.1126/science.1254581
Google Scholar
[3]
H. Sun, J. Liu, Hot corrosion of Fe-Cr-Ni multi-principal element alloys in Na2SO4+25%NaCl mixture salts at 700-900°C, Intermetallics 166 (2024) 108203.
DOI: 10.1016/j.intermet.2024.108203
Google Scholar
[4]
Z. Zhou, B. Liu, W. Guo, A. Fu, H. Duan, W. Li, Corrosion behavior and mechanism of FeCrNi medium-entropy alloy prepared by powder metallurgy, J. Alloy. Compd. 867 (2021) 159094.
DOI: 10.1016/j.jallcom.2021.159094
Google Scholar
[5]
G.Y. Koga, N. Birbilis, G. Zepon, C.S. Kiminami, W.J. Botta, M. Kaufman, A. Clarke, F.G. Coury, Corrosion resistant and tough multi-principal element Cr-Co-Ni alloys, J. Alloy. Compd. 884 (2021) 161107.
DOI: 10.1016/j.jallcom.2021.161107
Google Scholar
[6]
D.B. Miracle, O.N. Senkov, A critical review of high-entropy alloys and related concepts, Acta Mater. 122 (2017) 448-511.
DOI: 10.1016/j.actamat.2016.08.081
Google Scholar
[7]
A. Fu, B. Liu, Z. Li, B. Wang, Y. Cao, Y. Liu, Dynamic deformation behavior of a FeCrNi medium-entropy alloy, J. Mater. Sci. Technol. 100 (2022) 120-128.
DOI: 10.1016/j.jmst.2021.05.049
Google Scholar
[8]
J. Peng, B. Liu, W. Li, P.K. Liaw, J. Li, Q. Fang, Data-driven investigation of microstructure and surface integrity in additively manufactured multi-principal element alloys, J. Alloy. Compd. 937 (2023) 168431.
DOI: 10.1016/j.jallcom.2022.168431
Google Scholar
[9]
A. Fu, B. Liu, F. Tan, Y. Cao, J. Li, B. Liu, Q. Fang, P.K. Liaw, Y. Liu, Structural damage and phase stability of cobalt-free FeCrNi medium-entropy alloy under high-fluence ion irradiation, Appl. Surf. Sci. (2024) 159669.
DOI: 10.1016/j.apsusc.2024.159669
Google Scholar
[10]
A. Fu, B. Liu, W. Lu, B. Liu, J. Li, Q. Fang, Z. Li, Y. Liu, A novel supersaturated medium-entropy alloy with superior tensile properties and corrosion resistance, Scr. Mater. 186 (2020) 381-386.
DOI: 10.1016/j.scriptamat.2020.05.023
Google Scholar
[11]
J. Wang, W. Li, H. Yang, H. Huang, S. Ji, J. Ruan, Z. Liu, Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steels in H2SO4 and NaOH solutions, Corros. Sci. 177 (2020) 108973.
DOI: 10.1016/j.corsci.2020.108973
Google Scholar
[12]
Q. Wang, J. Xie, Y. Qin, Y. Kong, S. Zhou, Q. Li, Q. Sun, B. Chen, P. Xie, Z. Wei, S. Zhao, Recent progress in high-entropy alloy electrocatalysts for hydrogen evolution reaction, Adv. Mater. Interfaces 11 (2024) 2301020.
DOI: 10.1002/admi.202301020
Google Scholar
[13]
M. Unni, J. Sudagar, Preparation of electroless deposition of NiTiZr(P) quaternary alloy and their properties, Heliyon 10(17) (2024) e37363.
DOI: 10.1016/j.heliyon.2024.e37363
Google Scholar
[14]
M. Unni, J. Sudagar, Ni-Co-W-Zr(P) quinary-based medium entropy alloy achieved by an electrochemical route and its properties, J. Electrochem. Soc. 172 (2025) 012502.
DOI: 10.1149/1945-7111/ada2bb
Google Scholar
[15]
J. Sudagar, J. Lian, X. Chen, P. Lang, Y. Liang, High corrosion resistance of electroless Ni-P with chromium-free conversion pre-treatments on AZ91D magnesium alloy, Trans. Nonferrous Met. Soc. China 21(4) (2011) 921-928.
DOI: 10.1016/s1003-6326(11)60802-9
Google Scholar
[16]
B.A. Boukamp, A linear Kronig‐Kramers transform test for immittance data validation, J. Electrochem. Soc. 142(6) (1995) 1885-1894.
DOI: 10.1149/1.2044210
Google Scholar
[17]
B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edition, Prentice Hall, 2001.
Google Scholar
[18]
J. Wang, et al., Recent advances in transition-metal-based electrocatalysts for alkaline hydrogen evolution reaction, Adv. Funct. Mater. 30(27) (2020) 2002293.
Google Scholar
[19]
T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion, Scientific Reports 5(1) (2015) 13801.
DOI: 10.1038/srep13801
Google Scholar
[20]
O. van der Heijden, et al., Tafel slope plot as a tool to analyze electrocatalytic reactions, ACS Energy Letters 9(4) (2024) 1871-1879.
DOI: 10.1021/acsenergylett.4c00266
Google Scholar
[21]
C. Wan, et al., Unraveling and resolving the inconsistencies in tafel analysis for hydrogen evolution reactions, ACS Central Science 10(3) (2024) 658-665.
DOI: 10.1021/acscentsci.3c01439
Google Scholar