[1]
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377 (2004) 213-218. https://doi.org/
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[2]
J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299-303
DOI: 10.1002/adem.200300567
Google Scholar
[3]
O.N. Senkov, D,B. Miracle, K.J. Chaput, Development and exploration of refractory high-entropy alloys - A review, J. Mater. Res. 33 (2018) 3092–3128
DOI: 10.1557/jmr.2018.153
Google Scholar
[4]
R.Z. Zhang, M.J. Reece, Review of high entropy ceramics: Design, synthesis, structure and properties, J. Mater. Chem. A, 7 (2019) 22148-22162
DOI: 10.1039/c9ta05698j
Google Scholar
[5]
S.-C. Liang, Z.-C. Chang, D.-C. Tsai, Y.-C. Lin, H.-S. Sung, M.-J. Deng, F.-S. Shieu, Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering, Appl. Surf. Sci. 258 (2011) 399-403
DOI: 10.1016/j.apsusc.2011.09.006
Google Scholar
[6]
E. Castle, T. Csanadi, T. Grasso, J. Dusza, M.J. Reece, Processing and properties of high-entropy ultra-high temperature carbides, Sci. Rep. 8 (2018) 8609
DOI: 10.1038/s41598-018-26827-1
Google Scholar
[7]
J. Gild, Y Zhao, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, High-entropy metal diborides: a new class of of high-entropy materials and a new type of ultrahigh temperature ceramics, Sci. Rep. 6 (2016) 37946
DOI: 10.1038/srep37946
Google Scholar
[8]
O.F. Dippo, N. Mesgarzadeh, T.J. Harrington, G.D. Schrader, K.S. Vecchio, Bulk high-entropy nitrides and carbonitrides, Sci. Rep. 10 (2020) 21288
DOI: 10.1038/s41598-020-78175-8
Google Scholar
[9]
S. M. Smith II, W.G. Fahrenholtz, G.E. Hilmas, T. Huang, Pressureless sintering of dual-phase, high-entropy boride–carbide ceramics, J. Amer. Ceram. Soc., 106 (2023) 3359-63
DOI: 10.1111/jace.19053
Google Scholar
[10]
S. Gorsse, J.-P. Couzinié, D.B. Miracle, From high-entropy alloys to complex concentrated alloys, Comptes Rendus Physique 19 (2018) 21-736.
DOI: 10.1016/j.crhy.2018.09.004
Google Scholar
[11]
S. Gorsse, D.B. Miracle, O.N. Senkov, Mapping the world of complex concentrated alloys, Acta Mater. 135 (2017) 177-187
DOI: 10.1016/j.actamat.2017.06.027
Google Scholar
[12]
A.J. Wright, J. Luo, A step forward from high-entropy ceramics to compositionally complex ceramics: a new perspective, J. Mater. Sci., 55 (2020) 9812-9827
DOI: 10.1007/s10853-020-04583-w
Google Scholar
[13]
O.V. Sobol, A.A. Andreev, V.F. Gorban, N.A. Krapivka, V.A. Stolbovoi, I.V. Serdyuk, and V.E. Fil'chikov, Reproducibility of the single-phase structural state of the multielement high-entropy Ti–V–Zr–Nb–Hf system and related superhard nitrides formed by the vacuum-arc method, Techn. Physics Lett. 38 (2012) 40–47
DOI: 10.1134/S1063785012070127
Google Scholar
[14]
A.D. Pogrebnjak, I.V. Yakushchenko, G. Abadias, P. Chartier, O.V. Bondar, V.M. Beresnev, Y. Takeda, O.V. Sabol', K. Oyiosji, A.A. Andreyev, B.A. Mukushev, The effects of the deposition parameters of nitrides of high-entropy alloys (TiZrHfVNb)N on their structure, composition, mechanical and tribological properties, J. Superhard Mater. 35 (2013) 356-368
DOI: 10.3103/S106345761306004X
Google Scholar
[15]
V. Braic, M. Balaceanu, M. Braic, A. Vladescu, S. Panseri, A. Russo, Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications, J Mech. Behav. Biomed. Mat. 10 (2012) 198-205. https://doi.org/
DOI: 10.1016/j.jmbbm.2012.02.020
Google Scholar
[16]
K. Johansson, L. Riekehr, S. Fritze, E. Lewin, Multicomponent Hf-Nb-Ti-V-Zr nitride coatings by reactive magnetron sputter deposition, Surf. Coat. Technol. 349 (2018) 529-539
DOI: 10.1016/j.surfcoat.2018.06.030
Google Scholar
[17]
A. Kirnbauer, A. Kretschmer, C.M. Koller, T. Wojcik, V. Paneta, M. Hans, J.M. Schneider, P. Plocik, P.H. Mayrhofer, Mechanical properties and thermal stability of reactively sputtered multi-principal-metal Hf-Ta-Ti-V-Zr nitrides, Surf. Coat. Technol. 389 (2020) e125674
DOI: 10.1016/j.surfcoat.2020.125674
Google Scholar
[18]
F. Lofaj, P. Hviščová, T. Roch, V.Girman, M. Kabátová, J. Dobrovodský, Hysteresis-free reactive DC magnetron sputtered TiZrHfVNbTa-xN coatings: Structure and mechanical properties, Int. J. Refrac. Met. Hard Mater. 128 (2025) 107024
DOI: 10.1016/j.ijrmhm.2024.107024
Google Scholar
[19]
T.K. Chen, T.T. Shun, J.W. Yeh, M.S. Wong, Nanostructured nitride films of multi-elements high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol. 188-189 (2004) 193-200
DOI: 10.1016/j.surfcoat.2004.08.023
Google Scholar
[20]
F. Lofaj, L. Kvetková, T. Roch, J. Dobrovodský, V. Girman, M. Kabátová, M. Beňo, Reactive HiTUS TiNbVTaZrHf-Nx coatings: structure, composition and mechanical properties, Materials. 16 (2023) 563
DOI: 10.3390/ma16020563
Google Scholar