[1]
M. Jaskari, A. Hamada, T. Allam, K. Dzieciol, S. Ghosh, R. Schwaiger, P. Karjalainen, A. Järvenpää, Effects of volumetric energy density on defect structure and fatigue behaviour of powder bed fusion manufactured 316L stainless steel, Materials Science and Engineering: A 925 (2025) 147868.
DOI: 10.1016/J.MSEA.2025.147868
Google Scholar
[2]
T. Rautio, A. Hamada, J. Kumpula, A. Järvenpää, T. Allam, Enhancement of electrical conductivity and corrosion resistance by silver shell-copper core coating of additively manufactured AlSi10Mg alloy, Surf Coat Technol 403 (2020) 126426.
DOI: 10.1016/J.SURFCOAT.2020.126426
Google Scholar
[3]
T. Rautio, H. Torbati-Sarraf, T. Allam, A. Järvenpää, A. Hamada, Enhancement of electrical conductivity and corrosion resistance by gold-nickel coating of additively manufactured AlSi10Mg alloy, Journal of Materials Research and Technology 17 (2022) 521–536.
DOI: 10.1016/J.JMRT.2022.01.022
Google Scholar
[4]
Y. Huang, Y.T. Tan, Two-Step Post-processing Treatment to Improve Additive Manufactured AlSi10Mg Surface Finish, in: Springer, Singapore, 2024: p.391–398.
DOI: 10.1007/978-981-99-8643-9_45
Google Scholar
[5]
F. Careri, A. Sergi, P. Shashkov, R.H.U. Khan, M.M. Attallah, Plasma electrolytic oxidation (PEO) as surface treatment for high strength Al alloys produced by L-PBF: Microstructure, performance, and effect of substrate surface roughness, Surf Coat Technol 489 (2024) 131122.
DOI: 10.1016/J.SURFCOAT.2024.131122
Google Scholar
[6]
T. Rubben, R.I. Revilla, I. De Graeve, Effect of Heat Treatments on the Anodizing Behavior of Additive Manufactured AlSi10Mg, J Electrochem Soc 166 (2019) C42–C48.
DOI: 10.1149/2.0371902jes
Google Scholar
[7]
P. Chandramohan, R. Raghu, K. Dharmaseelan, S. Harinadh, Influence of heat treatment and anodizing on the corrosion behaviour of additive manufactured AlSi10Mg alloy, Bulletin of Materials Science 47 (2024) 1–8.
DOI: 10.1007/s12034-024-03223-2
Google Scholar
[8]
X. Ming, D. Song, A. Yu, H. Tan, Q. Zhang, Z. Zhang, J. Chen, X. Lin, Effect of heat treatment on microstructure, mechanical and thermal properties of selective laser melted AlSi7Mg alloy, J Alloys Compd 945 (2023) 169278.
DOI: 10.1016/J.JALLCOM.2023.169278
Google Scholar
[9]
N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Addit Manuf 1–4 (2014) 77–86.
DOI: 10.1016/J.ADDMA.2014.08.001
Google Scholar
[10]
J.W. Walton, J.H. Dwyer, L. Rice, Z. Rueger, G.M. Swain, The Effect of Sulfuric Acid Anodization on the Electrochemical Properties of Aluminum Alloy AlSi10Mg Prepared by Selective Laser Melting, J Electrochem Soc 171 (2024) 051503.
DOI: 10.1149/1945-7111/AD45C5
Google Scholar
[11]
R.I. Revilla, H. Terryn, I. De Graeve, Role of Si in the Anodizing Behavior of Al-Si Alloys: Additive Manufactured and Cast Al-Si10-Mg, J Electrochem Soc 165 (2018) C532–C541.
DOI: 10.1149/2.1301809jes
Google Scholar
[12]
P.K. Shaw, S. Dwivedi, P. Gautam, A.R. Dixit, A. Pramanik, Effect of Heat Treatment on Surface Integrity and Tribological Properties of LPBF Printed AlSi10Mg, in: 2024: p.67–77.
DOI: 10.1007/978-3-031-65656-9_7
Google Scholar