Pattern Formation in Reaction Diffusion Systems: A Moving Boundary Model

Article Preview

Abstract:

Periodic precipitation pattern formation in reaction diffusion systems is interpreted as a moving boundary problem. All the existing laws are reexamined on the basis of the moving boundary assumption. Experimental observations were found to be in good agreement with the new equations suggested.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 97-98)

Pages:

125-132

Citation:

Online since:

April 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.E. Liesegang: Naturwiss., Wochenschr. 11 (1896), p.353.

Google Scholar

[2] W. Ostwald: Z. Phys. Chem. Vol. 23 (1897), p.365.

Google Scholar

[3] T. Isemura: Bull. Chem. Soc. Japan Vol. 14 (1939), p.179.

Google Scholar

[4] C. Wagner: J. Colloid Sci. Vol. 5 (1950), p.85.

Google Scholar

[5] M.C. Muller, S. Kai, J. Ross: J. Phys. Chem. Vol. 86 (1982), p.4078.

Google Scholar

[6] G. Varghese, M.A. Ittyachen, C. Joseph: J. Mater. Sci. Vol. 28 (1993), p.6357.

Google Scholar

[7] A. Buki, E.K. Smidroczki, K. Meiszel, M. Zrinyi: Colloid Polym. Sci. Vol. 102 (1996), p.110.

Google Scholar

[8] J.H. Kruhl: Fractals and Dynamic Systems in Geo Science (Springer Verlag, Berlin, 1994).

Google Scholar

[9] M. Al-Ghoul, R. Sultan: J. Phys. Chem. A. Vol. 105 (2001), p.8053.

Google Scholar

[10] R.F. Sultan: Phys. Chem. Chem. Phys. Vol. 4 (2002), p.1253.

Google Scholar

[11] N. Hilal, R. Sultan: Chem. Phys. Letter. Vol. 374 (2003), p.183.

Google Scholar

[12] H.W. Morse, G.W. Pierce: Z. Phys. Chem. Vol. 45 (1903), p.589.

Google Scholar

[13] A. Einstein: Ann. Phys. 4th series Vol. XVII (1905), p.549.

Google Scholar

[14] K. Jablczynski: Bull. Soc. Chim. France Vol. 33 (1923), p.1592.

Google Scholar

[15] T. Antal, M. Droz, J. Magnin, Z. Racz, M. Zrinyi: J. Chem. Phys. Vol. 109 (1998), p.9479.

Google Scholar

[16] R. Matalon, A. Packter: J. Colloid Sci. Vol. 10 (1955), p.46.

Google Scholar

[17] K.M. Pillai, V.K. Vaidyan, M.A. Ittyachen: Colloid Polym. Sci. Vol. 258 (1980), p.831.

Google Scholar

[18] B. Chopard, P. Luthi, M. Droz: Phys. Rev. Lett. Vol. 72 (1994), p.1384.

Google Scholar

[19] M. Droz, J. Magnin, M. Zrinyi: J. Chem. Phys. Vol. 110 (1999), p.9618.

Google Scholar

[20] N. Kanniah, F.D. Gnanam, P. Ramaswamy: Proc. Indian Acad. Sci. Vol. 93 (1984), p.801.

Google Scholar

[21] J. George, G. Varghese: Chem. Phys. Lett. Vol. 362 (2002), p.8.

Google Scholar

[22] J. George, G. Varghese: Colloid Polym. Sci. Vol. 280 (2002), p.131.

Google Scholar

[23] J. George, I. Paul, P.A. Varughese, G. Varghese, Pramana: J. Phys. Vol. 60 (2003), p.1259.

Google Scholar

[24] J. George, S. Nair, G. Varghese: J. Mater. Sci. Letters (to appear in 2003).

Google Scholar

[25] L. Senf: Int. J. Heat. Mass. Transfer. Vol. 24 (1981), p. (1903).

Google Scholar

[26] A. Peterlin: Makromolek. Chem. Vol. 124 (1969), p.136.

Google Scholar