Self-Assembly of a Synthetic Opal Infiltrated with Liquid Crystal Like Photonic Crystal

Article Preview

Abstract:

We have studied transmission and linear dichroism spectra of synthetic opal, refractive index n- = 1.342, infiltrated with nematic liquid crystal with averaged refractive index n = 1.596 or with water n = 1.30 and alcohol n = 1.28. We demonstrating that the position of the stop band in the visible spectra is shifted by changing infiltrated material, or temperature, or by variation angle of light incidence. Multiple diffraction are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 97-98)

Pages:

245-250

Citation:

Online since:

April 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Yablonovitch: Phys. Rev. Lett. Vol. 58 (1987), p. (2059).

Google Scholar

[2] S. John: Phys. Rev. Lett. Vol. 58 (1987), p.2486.

Google Scholar

[3] E. Yablonovitch and T.J. Gmitter: Phys. Rev. Lett. Vol. 63 (1989), p. (1950).

Google Scholar

[4] E. Ozbay, A. Abeyta, G. Tuttle, N. Tringides, R. Biswas, C.T. Chan, C.M. Soukoulis and K.M. Ho: Phys. Rev. B Vol. 50 (1994), p. (1945).

Google Scholar

[5] J.E. Wijnhoven and W.L. Vos: Science Vol. 281 (1998), p.802.

Google Scholar

[6] Urbas, Y. Fink and E.L. Thomas: Macromolecules Vol. 32 (1999), p.4748.

Google Scholar

[7] M. Muller, R. Zentel, T. Maka, S.G. Romanov and C.M.S. Torres: Adv. Mater. Vol. 12 (2000), p.1499.

Google Scholar

[8] H. de Vries : Acta Crystallogr. Vol. 4 (1951), p.219.

Google Scholar

[9] R.B. Meyer: Appl. Phys. Lett. Vol. 12 (1968), p.281.

Google Scholar

[10] P.G. De Gennes: Solid State Commun. Vol. 6 (1968), p.163.

Google Scholar

[11] S.G. Chou, L. Cheung and R.B. Meyer: Solid State Commun. Vol. 11 (1972), p.277.

Google Scholar

[12] D.W. Berreman and T.J. Scheffer: Phys. Rev. Lett. Vol. 25 (1970), p.577.

Google Scholar

[13] Photonic Band Gap Materials, Ed. C.M. Soukoulis (Kluwer, Dordrecht, 1996).

Google Scholar

[14] M.D. Tocci, M. Scalora, M.J. Bloemer, J.P. Dowling and C.M. Bowden: Phys. Rev. A Vol. 53 (1996), p.2799.

Google Scholar

[15] O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brein, P.D. Dapkus and I. Kim: Science Vol. 284 (1999), p.1819.

Google Scholar

[16] J.P. Dowling, M. Scalora, M.J. Bloemer and C.M. Bowden: J. Appl. Phys. Vol. 75 (1994), p.1896.

Google Scholar

[17] V.I. Kopp, B. Fan, H.K.M. Vithana and A. Z. Genack: Opt. Lett. Vol. 23 (1998), p.1709.

Google Scholar

[18] J.D. Joannopoulos, R.D. Meade and J.N. Winn: Photonic Crystals (Princeton University Press, Princeton, NJ, 1995).

Google Scholar

[19] H. Finkelmann, S.T. Kim, A. Muzon, P. Palffy-Muhoray and B. Taheri: Adv. Mater. Vol. 13 (2001), p.1069.

Google Scholar

[20] P.A. Bermel and M. Warner: Phys. Rev. E Vol. 65 (2001), p.0566014.

Google Scholar

[21] P.A. Bermel and M. Warner: Phys. Rev. E Vol. 64 (2001), p.010702.

Google Scholar

[22] K. Busch and S. John: Phys. Rev. Lett. Vol. 83 (1999), p.967.

Google Scholar

[23] S. Gottardo, D.S. Wiersma, W.L. Vos: Physica B (in press).

Google Scholar

[24] S. Pajeda, R. Vaisnoras, P. Adomenas, M. Rogante: Proc. SPIE Vol. 4415 (2000), p.156.

Google Scholar

[25] K. Yoshino, Y. Shimoda, K. Nakayama, T. Tamura, T. Matsui, H. Kajii and M. Ozaki: Mol. Cryst. and Liq. Cryst. Vol. 364 (2001), p.501.

Google Scholar

[26] K. Yoshino, S. Satoh, Y. Shimoda, Y. Kawagishi, K. Nakayama and M. Ozaki: Jpn. Appl. Phys. Vol. 38, Part. 2, No. 8B (1999), p. L961.

Google Scholar

[27] K. Yoshino, S. Satoh, Y. Shimoda, Y. Kawagishi, K. Nakayama and M. Ozaki: Appl. Phys. Lett. Vol. 75, No. 7 (1999), p.932.

Google Scholar

[28] H.M. van Driel and W.L. Vos: Phys. Rev. B Vol. 62 (2000), p.9872.

Google Scholar

[29] H.P. Schriemer, H.M. van Driel, A.F. Koenderink and W.L. Vos: Phys. Rev. A Vol. 63 (2001), pp.011801-1.

Google Scholar