Self-Assembly of a Synthetic Opal Infiltrated with Liquid Crystal Like Photonic Crystal

Abstract:

Article Preview

We have studied transmission and linear dichroism spectra of synthetic opal, refractive index n- = 1.342, infiltrated with nematic liquid crystal with averaged refractive index n = 1.596 or with water n = 1.30 and alcohol n = 1.28. We demonstrating that the position of the stop band in the visible spectra is shifted by changing infiltrated material, or temperature, or by variation angle of light incidence. Multiple diffraction are discussed.

Info:

Periodical:

Solid State Phenomena (Volumes 97-98)

Edited by:

Stepas Janušonis

Pages:

245-250

DOI:

10.4028/www.scientific.net/SSP.97-98.245

Citation:

L. Rasteniene et al., "Self-Assembly of a Synthetic Opal Infiltrated with Liquid Crystal Like Photonic Crystal", Solid State Phenomena, Vols. 97-98, pp. 245-250, 2004

Online since:

April 2004

Export:

Price:

$35.00

[1] E. Yablonovitch: Phys. Rev. Lett. Vol. 58 (1987), p. (2059).

[2] S. John: Phys. Rev. Lett. Vol. 58 (1987), p.2486.

[3] E. Yablonovitch and T.J. Gmitter: Phys. Rev. Lett. Vol. 63 (1989), p. (1950).

[4] E. Ozbay, A. Abeyta, G. Tuttle, N. Tringides, R. Biswas, C.T. Chan, C.M. Soukoulis and K.M. Ho: Phys. Rev. B Vol. 50 (1994), p. (1945).

[5] J.E. Wijnhoven and W.L. Vos: Science Vol. 281 (1998), p.802.

[6] Urbas, Y. Fink and E.L. Thomas: Macromolecules Vol. 32 (1999), p.4748.

[7] M. Muller, R. Zentel, T. Maka, S.G. Romanov and C.M.S. Torres: Adv. Mater. Vol. 12 (2000), p.1499.

[8] H. de Vries : Acta Crystallogr. Vol. 4 (1951), p.219.

[9] R.B. Meyer: Appl. Phys. Lett. Vol. 12 (1968), p.281.

[10] P.G. De Gennes: Solid State Commun. Vol. 6 (1968), p.163.

[11] S.G. Chou, L. Cheung and R.B. Meyer: Solid State Commun. Vol. 11 (1972), p.277.

[12] D.W. Berreman and T.J. Scheffer: Phys. Rev. Lett. Vol. 25 (1970), p.577.

[13] Photonic Band Gap Materials, Ed. C.M. Soukoulis (Kluwer, Dordrecht, 1996).

[14] M.D. Tocci, M. Scalora, M.J. Bloemer, J.P. Dowling and C.M. Bowden: Phys. Rev. A Vol. 53 (1996), p.2799.

[15] O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brein, P.D. Dapkus and I. Kim: Science Vol. 284 (1999), p.1819.

[16] J.P. Dowling, M. Scalora, M.J. Bloemer and C.M. Bowden: J. Appl. Phys. Vol. 75 (1994), p.1896.

[17] V.I. Kopp, B. Fan, H.K.M. Vithana and A. Z. Genack: Opt. Lett. Vol. 23 (1998), p.1709.

[18] J.D. Joannopoulos, R.D. Meade and J.N. Winn: Photonic Crystals (Princeton University Press, Princeton, NJ, 1995).

[19] H. Finkelmann, S.T. Kim, A. Muzon, P. Palffy-Muhoray and B. Taheri: Adv. Mater. Vol. 13 (2001), p.1069.

[20] P.A. Bermel and M. Warner: Phys. Rev. E Vol. 65 (2001), p.0566014.

[21] P.A. Bermel and M. Warner: Phys. Rev. E Vol. 64 (2001), p.010702.

[22] K. Busch and S. John: Phys. Rev. Lett. Vol. 83 (1999), p.967.

[23] S. Gottardo, D.S. Wiersma, W.L. Vos: Physica B (in press).

[24] S. Pajeda, R. Vaisnoras, P. Adomenas, M. Rogante: Proc. SPIE Vol. 4415 (2000), p.156.

[25] K. Yoshino, Y. Shimoda, K. Nakayama, T. Tamura, T. Matsui, H. Kajii and M. Ozaki: Mol. Cryst. and Liq. Cryst. Vol. 364 (2001), p.501.

[26] K. Yoshino, S. Satoh, Y. Shimoda, Y. Kawagishi, K. Nakayama and M. Ozaki: Jpn. Appl. Phys. Vol. 38, Part. 2, No. 8B (1999), p. L961.

[27] K. Yoshino, S. Satoh, Y. Shimoda, Y. Kawagishi, K. Nakayama and M. Ozaki: Appl. Phys. Lett. Vol. 75, No. 7 (1999), p.932.

[28] H.M. van Driel and W.L. Vos: Phys. Rev. B Vol. 62 (2000), p.9872.

[29] H.P. Schriemer, H.M. van Driel, A.F. Koenderink and W.L. Vos: Phys. Rev. A Vol. 63 (2001), pp.011801-1.

In order to see related information, you need to Login.