Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: January 2012
Authors: Ashok Kumar, Y. Balaji, N. Eswara Prasad
Properties
Mechanical properties
300M
4340
35NCD16
4330V
H11
D6AC
30XGCN2A
18Ni
Maraging
Density [gm/cm3]
7.83
7.83
-
-
7.75
-
-
7.83
Hardness [HRC]
52-55
-
50
45
56
-
47-50
48-54
Tensile Properties( Longitudinal) at room temperature
0.2%PS [MPa]
1550
1080
1450
1280
1490
1520
1420
1690-1725
UTS [MPa]
1900-2100
1420
1700-2000
1520
1790
1790
1620
1760
%El [MPa]
8
10
7
10
8
5
11
11-13
%RA
30
15
40
30
30
18
4-5
50
Tensile Properties(Transverse) at room temperature
0.2%PS [MPa]
1550
-
1450
1280
1490
1520
-
1700
UTS [MPa]
1900-2100
-
1700-2000
1520
1790
1790
-
1800
%El
5
-
6
10
5
5
-
5
%RA
20
-
30
30
15
18
-
25
Ratio of YS/UTS
0.74-0.82
0.76
0.73-0.85
0.84
0.83
0.85
0.88
0.96
KIc MPa √m
71
71
56
56
60
80
77
80
HCF(Smooth)
855
690
720
586
830
700
608
680
(Notch)
372
-
370
276
-
280
422
350
LCF(Smooth)
1480
1240
1180
1173
1450
1100
-
1100
Notch)
790
-
520
759
-
420
-
690
KISCCMPa √m
11-19
11-16
21
-
33
-
-
33
E (GPa)
193
200
-
200
195
-
-
180
Impact at RT(J)
25
-
30
20
25
-
10.12
Composition in wt.% Element/Alloy 300 M 4340 35NCD16 4330V HII D6AC 30X GCN2A 18 Ni Maraging Carbon (C) Manganese (Mn) Nickel (Ni) Chromium (Cr) Sulphur (S) Phosphorous (S) Silicon (Si) Vanadium (V) Copper (Cu) Molybdenum (Mo) Titanium (Ti) Aluminium (Al) Cobalt (Co) Iron (Fe) 0.41-0.46 0.60-0.90 1.65-2.0 0.70-0.95 0.01 0.01 1.45-1.80 0.05-0.10 0.35 0.30-0.50 - - - Bal. 0.38-0.43 0.65-0.85 1.65-2.0 0.70-0.90 0.04 0.04 0.20-0.35 - - 0.20-0.30 - - - Bal. 0.30-0.44 - 3.5-4.5 1.6-2.0 0.02 0.2 0.25-0.4 0.05-0.10 - 0.30-0.45 - - - Bal. 0.28-0.33 0.75-1.0 1.65-2.0 0.75-1.0 0.01 0.01 0.2-0.35 0.05-0.1 - 0.35-0.5 - - - Bal. 0.38-0.43 0.20-0.40 0.25 4.75-5.25 0.20 0.20 0.80-1.00 0.40-0.60 0.35 1.20-1.40 - - - Bal. 0.45-0.50 0.60-0.90 04-0.7 0.90-1.20 0.01 0.01 0.15-0.30 0.05-0.15 0.35 0.90-1.10 - - - Bal. 0.27-0.33 1.0-1.2 1.4-1.8 0.9-1.2 0.015 0.02 0.90-1.2 - - - - - - Bal. 0.03 0.1 17-19
Table 4 (a): Properties of Maraging Steel MDN 250A Tensile properties evaluated on 215 mm product size Temp (oC) 0.2% PS [MPa] UTS [MPa] El [%] RA [%] Room Temperature 1688-1768 (1655) 1760-1825 (1724 Typical) 11-13 (6.0 min) 54-62 (34 Typical) 200 1527-1596 1574-1647 10-16 54-60 300 1480-1527 1511-1567 10-13 56-59 400 1420-1470 1472-1535 11-18 54-60 Table 4 (b): Properties of Maraging Steel MDN 250A Properties evaluated on 215 mm product size Hardness [HRC] 51-54 (48 min) Impact Strength at RT [Joules] 19-25.8 (8 min) Shear Strength [MPa] 977-1063 Torsional Shear Strength [MPa] 1378-1411 Ratio of Notch Tensile Strength to Ultimate Tensile Strength 1.53-1.58 (1.50 min) Plane Strain Fracture Toughness, KIC [MPa√m] 81.3-92.7 (80 min) Metallography · Macrostructure · Microstructure · Non-metallic Inclusion Satisfactory Prior Austenitic grain size, ASTM No. 5 or finer Satisfactory Retained Austenite Less than 1% Magnetic flow detection Satisfactory Forgeability Satisfactory
Composition in wt.% Element/Alloy 300 M 4340 35NCD16 4330V HII D6AC 30X GCN2A 18 Ni Maraging Carbon (C) Manganese (Mn) Nickel (Ni) Chromium (Cr) Sulphur (S) Phosphorous (S) Silicon (Si) Vanadium (V) Copper (Cu) Molybdenum (Mo) Titanium (Ti) Aluminium (Al) Cobalt (Co) Iron (Fe) 0.41-0.46 0.60-0.90 1.65-2.0 0.70-0.95 0.01 0.01 1.45-1.80 0.05-0.10 0.35 0.30-0.50 - - - Bal. 0.38-0.43 0.65-0.85 1.65-2.0 0.70-0.90 0.04 0.04 0.20-0.35 - - 0.20-0.30 - - - Bal. 0.30-0.44 - 3.5-4.5 1.6-2.0 0.02 0.2 0.25-0.4 0.05-0.10 - 0.30-0.45 - - - Bal. 0.28-0.33 0.75-1.0 1.65-2.0 0.75-1.0 0.01 0.01 0.2-0.35 0.05-0.1 - 0.35-0.5 - - - Bal. 0.38-0.43 0.20-0.40 0.25 4.75-5.25 0.20 0.20 0.80-1.00 0.40-0.60 0.35 1.20-1.40 - - - Bal. 0.45-0.50 0.60-0.90 04-0.7 0.90-1.20 0.01 0.01 0.15-0.30 0.05-0.15 0.35 0.90-1.10 - - - Bal. 0.27-0.33 1.0-1.2 1.4-1.8 0.9-1.2 0.015 0.02 0.90-1.2 - - - - - - Bal. 0.03 0.1 17-19
Table 4 (a): Properties of Maraging Steel MDN 250A Tensile properties evaluated on 215 mm product size Temp (oC) 0.2% PS [MPa] UTS [MPa] El [%] RA [%] Room Temperature 1688-1768 (1655) 1760-1825 (1724 Typical) 11-13 (6.0 min) 54-62 (34 Typical) 200 1527-1596 1574-1647 10-16 54-60 300 1480-1527 1511-1567 10-13 56-59 400 1420-1470 1472-1535 11-18 54-60 Table 4 (b): Properties of Maraging Steel MDN 250A Properties evaluated on 215 mm product size Hardness [HRC] 51-54 (48 min) Impact Strength at RT [Joules] 19-25.8 (8 min) Shear Strength [MPa] 977-1063 Torsional Shear Strength [MPa] 1378-1411 Ratio of Notch Tensile Strength to Ultimate Tensile Strength 1.53-1.58 (1.50 min) Plane Strain Fracture Toughness, KIC [MPa√m] 81.3-92.7 (80 min) Metallography · Macrostructure · Microstructure · Non-metallic Inclusion Satisfactory Prior Austenitic grain size, ASTM No. 5 or finer Satisfactory Retained Austenite Less than 1% Magnetic flow detection Satisfactory Forgeability Satisfactory
Online since: October 2014
Authors: Wei Shun Cheng, Yu Hong Sun, Na Zhang, Hong Xia Zeng, Xian Feng Shi, Yu Hua Li
[4] Guo Shao gui. et al.
[10]El Midaoui M., Talouizte A., Benbella M., Serieys H., Berville A.
[13]El-Tayeb M.A.
[19] El-Bassiony H.M. and Bakheta M.A.
[10]El Midaoui M., Talouizte A., Benbella M., Serieys H., Berville A.
[13]El-Tayeb M.A.
[19] El-Bassiony H.M. and Bakheta M.A.
Online since: March 2007
Authors: Xiao Dong Zhu
Table 1 Chemical compositions of experimental steels [�]
steel C Si Mn P S Al N Nb
A 0.19 0.47 2.29 0.017 0.011 0.045 0.0029 0.021
B 0.16 1.30 1.90 0.0091 0.0058 0.041 � 0.004 0.024
Table 2 Parameters of continuous anneal simulation
process soaking slow cooling fast cooling overageing
parameters temperature:
T1
time: t1
cooling speed:
v1
start temperature:T2
end temperature:T3
cooling speed: v2
temperature:
T4
time: t2
Mechanical property measurement is done on an Instron tensile test machine with
JIS 5# specimen.
The yield strength of steel B is significantly lower than steel A at any cooling speed, and the elongation of steel B is better than steel A. 0 20 40 60 80 100 120 900 1000 1100 1200 1300 Steel A Steel B TS, MPa )DVW � FRR� Q�� VSHHG� � � � V 400 500 600 700 YP, MPa 8 12 16 20 El, % Fig 1 Effect of fast cooling speed on the mechanical properties (T1=800��t1=80s, v1=7�/s, T2=650�, T3=300�, t2=300s) Shown in Fig 2 is the effect of fast cooling start temperature (T2) on the mechanical properties.
With the increase in strength, the elongation decreases with the rise of the fast cooling start temperature. 550 600 650 700 750 900 1000 1100 1200 1300 Steel A Steel B TS, MPa F RR� � Q�� V W DU W � W HPS� � � 500 600 700 800 900 YP, MPa 8 12 16 20 El, % Fig 2 Effect of fast cooling start temperature on the mechanical properties (T1=800��t1=80s, v1=7�/s, v2=90�/s, T3�300� t2=300s) Shown in Fig 3 is the effect of high speed cooling end temperature (T4) and overageing temperature on the mechanical properties.
The expected better anti temper-softening property of steel B is not observed though it has relatively higher Si content. 250 300 350 400 450 800 900 1000 1100 1200 Steel A Steel B TS, MPa F RR� � Q�� HQG� DQG� 2$� W HPS� � � 450 500 550 600 650 YP, MPa 12 16 20 24 El, % Fig 3 Effect of fast cooling end temperature on the mechanical properties (T1=800��t1=80s, T2=650�, v2=90�/s, t2=300s) Shown in Fig 4 and Fig 5, is the overall comparison of elongation and YP/TS ratio between the steel A and B.
The yield strength of steel B is significantly lower than steel A at any cooling speed, and the elongation of steel B is better than steel A. 0 20 40 60 80 100 120 900 1000 1100 1200 1300 Steel A Steel B TS, MPa )DVW � FRR� Q�� VSHHG� � � � V 400 500 600 700 YP, MPa 8 12 16 20 El, % Fig 1 Effect of fast cooling speed on the mechanical properties (T1=800��t1=80s, v1=7�/s, T2=650�, T3=300�, t2=300s) Shown in Fig 2 is the effect of fast cooling start temperature (T2) on the mechanical properties.
With the increase in strength, the elongation decreases with the rise of the fast cooling start temperature. 550 600 650 700 750 900 1000 1100 1200 1300 Steel A Steel B TS, MPa F RR� � Q�� V W DU W � W HPS� � � 500 600 700 800 900 YP, MPa 8 12 16 20 El, % Fig 2 Effect of fast cooling start temperature on the mechanical properties (T1=800��t1=80s, v1=7�/s, v2=90�/s, T3�300� t2=300s) Shown in Fig 3 is the effect of high speed cooling end temperature (T4) and overageing temperature on the mechanical properties.
The expected better anti temper-softening property of steel B is not observed though it has relatively higher Si content. 250 300 350 400 450 800 900 1000 1100 1200 Steel A Steel B TS, MPa F RR� � Q�� HQG� DQG� 2$� W HPS� � � 450 500 550 600 650 YP, MPa 12 16 20 24 El, % Fig 3 Effect of fast cooling end temperature on the mechanical properties (T1=800��t1=80s, T2=650�, v2=90�/s, t2=300s) Shown in Fig 4 and Fig 5, is the overall comparison of elongation and YP/TS ratio between the steel A and B.
Online since: July 2015
Authors: Andrea Ghiotti, Enrico Simonetto, Stefania Bruschi
Al-Qureshi, Elastic-plastic analysis of tube bending, International Journal of Machine Tools & Manufacture (1999) 87-104
El Megharbel, G.A.
El Nasser, A.El Domiaty, Bending of tube and section made of strain-hardening materials, Journal of Materials Processing Technology 203 (2008) 372-380
El Megharbel, G.A.
El Nasser, A.El Domiaty, Bending of tube and section made of strain-hardening materials, Journal of Materials Processing Technology 203 (2008) 372-380
Topography and Wettability of Waterborne Polyurethane Coatings with Varying Amounts of Hard Segments
Online since: January 2013
Authors: Zhan Ping Zhang, Mei Miao, Yu Hong Qi, Yan Zhang
Chen and E.L.
Briber, E.L.
[13] A.L.
Briber, E.L.
Briber, E.L.
[13] A.L.
Briber, E.L.
Online since: October 2010
Authors: Khaled A. Abou-El-Hossein, Han Bing Chua, Huey Tze Ting
aahwai_ting@hotmail.com, bKhaled.Abou-El-Hossein@nmmu.ac.za, cchua.han.bing@curtin.edu.my
Keywords: Chemical etching, Machinable glass ceramics, design of experiment.
Saito et. al. [9, 10] generated a micro-structure on advanced ceramics by combining chemical etching and micro-indentation method to form the patterning on glass.
Gaiseanu et al. [19] concluded that etching rate decreased with increasing etching duration in BN.
William et al. [16, 20] mentioned that each substrate had to be chemically compatible to their etching solution in order to conduct the etching process.
Cook et al. [21] showed the importance of chemical etchant.
Saito et. al. [9, 10] generated a micro-structure on advanced ceramics by combining chemical etching and micro-indentation method to form the patterning on glass.
Gaiseanu et al. [19] concluded that etching rate decreased with increasing etching duration in BN.
William et al. [16, 20] mentioned that each substrate had to be chemically compatible to their etching solution in order to conduct the etching process.
Cook et al. [21] showed the importance of chemical etchant.
Online since: June 2019
Authors: Stefan Gloggnitzer, Gerald Pinter, Gerald Pilz, Christian Schneider
El Kadi and Ellyin [6] as well as Justo et al. [7] showed that a slight variation of the test frequency leads to an identical number of failure cycles, therefore the test results were presented in the following evaluations and in the combined result presentations independently of the test frequency.
El Kadi, F.
El Kadi, F.
Online since: March 2013
Authors: Asta Guobienė, Judita Puišo, Valentinas Baltrušaitis, Algirdas Lazauskas, Pranas Narmontas, Igoris Prosyčevas
El-Sayed, M.A.
El-Sayad: Plasmonics Vol. 2 (2007), p. 107−118
[7] A.L.
El-Sayad: Plasmonics Vol. 2 (2007), p. 107−118
[7] A.L.
Online since: December 2023
Authors: Abderrahim Belloufi, Noureddine Cherrad, Soufiane Halimi, Mohammed Mustapha Belhadj, Mounira Chelgham, Fares Mouissi, Youcef Messaoudi, Soufiane Touati, Khadra Aliouat
El-Shafay, K.K.
El-Sergany, M.
El-Agouz, T.
El-Said, O.M.
El-Said, M.
El-Sergany, M.
El-Agouz, T.
El-Said, O.M.
El-Said, M.
Online since: April 2018
Authors: Quang Cherng Hsu, Jhan Hong Ye
Fuh-Kuo Chen et al. [2] discussed the effect of process parameters on the formability of drawing process of magnesium alloy AZ31 in 2003.
Zein et al. [4] studied the influence of die design parameters on the spring back, thickness distribution and thinning of the blank in 2014.
In 2014, Lei Chen et al. [5] studied on spring back phenomenon in rubber forming by using the straight flanging process.
El Sherbiny, M.
El shazly, Thinning and spring back prediction of sheet metal in the deep drawing process, Materials and Design, Vol. 53 (2014) pp. 797-808
Zein et al. [4] studied the influence of die design parameters on the spring back, thickness distribution and thinning of the blank in 2014.
In 2014, Lei Chen et al. [5] studied on spring back phenomenon in rubber forming by using the straight flanging process.
El Sherbiny, M.
El shazly, Thinning and spring back prediction of sheet metal in the deep drawing process, Materials and Design, Vol. 53 (2014) pp. 797-808