Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: December 2004
Authors: Ya Xu, Toshiyuki Hirano, Masahiko Demura, Kyosuke Kishida, Satoru Kobayashi
Microstructure and Texture Evolution during Cold Rolling and
Recrystallization of Ni3Al Single Crystals
Kyosuke KISHIDA
1,a, Masahiko DEMURA
1,b, Satoru KOBAYASHI2,c, Ya XU
1,d
and Toshiyuki HIRANO
1,e
1
Materials Engineering Laboratory, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba,
Ibaraki 305-0047, JAPAN
2
Max Planck Institute for Iron Research, Max-Planck Str. 1 D-40237, Düsseldorf, GERMANY
a
KISHIDA.Kyosuke@nims.go.jp, bDEMURA.Masahiko@nims.go.jp, ckobayashi@mpie.de,
d
Xu.Ya@nims.go.jp, eHIRANO.Toshiyuki@nims.go.jp
Keywords: Intermetallic compounds, Ni3Al, single crystals, cold rolling, recrystallization, texture,
microstructure, mechanical properties.
Fig. 1.
References [1] N.
Gottstein, Intermetallics Vol.1 (1993), p. 171 [5] V.
Forum Vol. 475-479 (2005), p.755 [24] Y.
Fig. 1.
References [1] N.
Gottstein, Intermetallics Vol.1 (1993), p. 171 [5] V.
Forum Vol. 475-479 (2005), p.755 [24] Y.
Online since: November 2017
Authors: Messaoud Bourezane
b/ Rotation qZ is fixed at 1 and 2.
c/ Rotation qZ is free at 1 and 2.
Cantilever beam; Data and grids Table 1.
Pure bending of cantilever beam; regular and distorted mesh for case “c’’ e [14] SBTE* σXb WA σxB WA 0 241 45.08 3018 96.02 0.5 230 45.33 3030 96.60 1 55 45.84 3051 97.04 1.5 479 46.88 3066 97.30 2 464 47.96 3066 97.40 2.5 419 48.68 3056 97.38 3 377 49.15 3044 97.26 3.5 340 49.40 3032 97.10 4 313 49.47 3023 96.90 4.5 293 49.40 3016 96.70 [15] 3000 100.00 3000 100.00 *Present element, [15] Analytical solution Fig. 5.
Mechanica Volume 19, Issue 1 (1986) 1-16
c/ Rotation qZ is free at 1 and 2.
Cantilever beam; Data and grids Table 1.
Pure bending of cantilever beam; regular and distorted mesh for case “c’’ e [14] SBTE* σXb WA σxB WA 0 241 45.08 3018 96.02 0.5 230 45.33 3030 96.60 1 55 45.84 3051 97.04 1.5 479 46.88 3066 97.30 2 464 47.96 3066 97.40 2.5 419 48.68 3056 97.38 3 377 49.15 3044 97.26 3.5 340 49.40 3032 97.10 4 313 49.47 3023 96.90 4.5 293 49.40 3016 96.70 [15] 3000 100.00 3000 100.00 *Present element, [15] Analytical solution Fig. 5.
Mechanica Volume 19, Issue 1 (1986) 1-16
Online since: May 2025
Authors: Sukarni Sukarni, Nandang Mufti, Henry Setiyanto, Hariyanto Hidayat, Fadhillah Choirunnisa
Fig.1.
Table 1.
Materials, 14(1), 34
Applied Physics A, 128(1), 8
Applied Catalysis B: Environmental, 206, 479-489
Table 1.
Materials, 14(1), 34
Applied Physics A, 128(1), 8
Applied Catalysis B: Environmental, 206, 479-489
Online since: December 2023
Authors: Diego Mantovani, Pascale Chevallier, Leticia Marin de Andrade, Carlo Paternoster, Francesco Copes
Fig. 1.
Inlet in Fig. 1.a is the untreated sample.
Table 1.
References [1] S.
Coupling Phase Diagrams Thermochem. 35 (2011) 479–491. doi:10.1016/j.calphad.2011.08.002
Inlet in Fig. 1.a is the untreated sample.
Table 1.
References [1] S.
Coupling Phase Diagrams Thermochem. 35 (2011) 479–491. doi:10.1016/j.calphad.2011.08.002
Online since: August 2023
Authors: Nguyen Ngoc Quy, Thanh Viet Nguyen, Tran Quoc Toan, Thi Thu Thuy Dinh, Thi Tuyen Tran, Thi Bich Hoang, Quoc Long Pham, Quyet Chien Nguyen
Table 1.
15052-76-3 1.72 Cadina-1(10),4-dien-8a-ol 220.35 C15H24O 147853-18-7 0.95 Dihydroagarofuran-15-al 222.37 C15H26O 20053-66-1 9.20 Selina-3,11-dien-9-ol 220.35 C15H24O 133593-96-1 1.97 Neopetasone 218.33 C15H22O 13902-42-6 14.43 Selina-4,11-dien-14-al 218.34 C15H22O 150034-05-2 2.73 Dihydrokaranone 218.34 C15H22O 19598-45-9 3.25 Nootkatone 218.34 C15H22O 91416-23-8 0.61 oxo-agarospirol 236.35 C15H24O2 93133-69-8 2.59 Total 78.74 Fig. 1.
References [1] N.T.T.
Nguyen, Using soft computing approaches for orange (Citrus nobilis Lour. var. nobilis) oils extraction process, IOP Conference Series: Materials Science and Engineering. 479 (2019) 012015
Sci. & Agric. 10 (2015) 1–5
15052-76-3 1.72 Cadina-1(10),4-dien-8a-ol 220.35 C15H24O 147853-18-7 0.95 Dihydroagarofuran-15-al 222.37 C15H26O 20053-66-1 9.20 Selina-3,11-dien-9-ol 220.35 C15H24O 133593-96-1 1.97 Neopetasone 218.33 C15H22O 13902-42-6 14.43 Selina-4,11-dien-14-al 218.34 C15H22O 150034-05-2 2.73 Dihydrokaranone 218.34 C15H22O 19598-45-9 3.25 Nootkatone 218.34 C15H22O 91416-23-8 0.61 oxo-agarospirol 236.35 C15H24O2 93133-69-8 2.59 Total 78.74 Fig. 1.
References [1] N.T.T.
Nguyen, Using soft computing approaches for orange (Citrus nobilis Lour. var. nobilis) oils extraction process, IOP Conference Series: Materials Science and Engineering. 479 (2019) 012015
Sci. & Agric. 10 (2015) 1–5
Online since: February 2011
Authors: Chun Hua Ding, Jian Feng Yang, Zhi Hai Han, Hong Qiang Li, Chao Xu, Yan Li Xu, Yu Bai
Table 1.
The experimental findings are as follows: 1.
References [1] N.P.
Vol. 1 (1986) p. 68
Forum Vol. 475-479 (2005) p. 3981
The experimental findings are as follows: 1.
References [1] N.P.
Vol. 1 (1986) p. 68
Forum Vol. 475-479 (2005) p. 3981
Online since: December 2011
Authors: Xiao Dong Liu, Dong Dong Meng, Xu Guang Zheng, Qi Xin Guo
Here limited to the experimental resolution ratios we give the integral parts of IR data (cm–1) and Raman data (cm–1) accurate to 1 decimal place.
Table 1.
489.5, 479.0, 456.1 433.8, 384.8, ?
2Ag[Cu3Br], Bg[Cu3Br] (1) IR 2360/1640 cm–1 bands are due to the intrinsic disturbance from CO2 and H2O
References [1] X.
Table 1.
489.5, 479.0, 456.1 433.8, 384.8, ?
2Ag[Cu3Br], Bg[Cu3Br] (1) IR 2360/1640 cm–1 bands are due to the intrinsic disturbance from CO2 and H2O
References [1] X.
Online since: October 2013
Authors: Qing Wen Gu, Yong Hong Chen, Dong Tian, Xiao Yong Lu, Yan Zhi Ding, Bin Lin
XRD patterns of the mixtures of PNCC, PNCCC0.1, SDC and PNCCC0.1/SDC(a) PNCCC0.1/YSZ(b) after sintering at 1350 ℃for 5 h.
When x increased from 0.5 to2, the average linear TEC values of the ceramics increased from 10.7×10-6 K-1(x=0.5), 11.1×10-6 K-1(x=0.1), 10.9×10-6 K-1(x=0.15), 11.4×10-6 K-1(x=0.2)The TECof the all samples were close to that of other components of SOFCs,such as the yttria-stabilized zirconia (YSZ) electrolyte(YSZ,10.5×10-6K-1)[17], (SDC,TEC=12.26×10-6 K-1)[21], H-SOFC electrolyte BaZr0.7Pr0.1Y0.16Zn0.04O3-δ(BZPYZn, 9.2×10-6K-1) [22],anode like (Ni-YSZ,10.8×10-6K-1)[23]the Sr-substituted PrMnO3cathode(Pr1-xSrxMnO3,11.1×0-6K-1) [24].
Power Sources Vol. 158 (1).( 2006) ,p. 354
Evaluation of simple, easily sintered La0.7Ca0.3Cr0.97 O3-δ perovskite oxide as novel interconnect material for solid oxide fuel cells:J.Alloys and Compounds, Vol. 479(2009), p.764 [13] W.
Rare Earths, Vol. 28 (1) (2010) , p.153 [15] J.
When x increased from 0.5 to2, the average linear TEC values of the ceramics increased from 10.7×10-6 K-1(x=0.5), 11.1×10-6 K-1(x=0.1), 10.9×10-6 K-1(x=0.15), 11.4×10-6 K-1(x=0.2)The TECof the all samples were close to that of other components of SOFCs,such as the yttria-stabilized zirconia (YSZ) electrolyte(YSZ,10.5×10-6K-1)[17], (SDC,TEC=12.26×10-6 K-1)[21], H-SOFC electrolyte BaZr0.7Pr0.1Y0.16Zn0.04O3-δ(BZPYZn, 9.2×10-6K-1) [22],anode like (Ni-YSZ,10.8×10-6K-1)[23]the Sr-substituted PrMnO3cathode(Pr1-xSrxMnO3,11.1×0-6K-1) [24].
Power Sources Vol. 158 (1).( 2006) ,p. 354
Evaluation of simple, easily sintered La0.7Ca0.3Cr0.97 O3-δ perovskite oxide as novel interconnect material for solid oxide fuel cells:J.Alloys and Compounds, Vol. 479(2009), p.764 [13] W.
Rare Earths, Vol. 28 (1) (2010) , p.153 [15] J.
Online since: December 2023
Authors: Rosana Budi Setyawati, Yazid Rijal Azinuddin, Agus Purwanto, Harry Kasuma Kiwi Aliwarga, Khikmah Nur Rikhy Stulasti, Windhu Griyasti Suci
Fig. 1.
Table 1.
Meanwhile, the vibration of Ni-O is found at 479 cm-1 [24].
References [1] G.
Energy, vol. 11, no. 1, pp. 71–89, 2022, doi: 10.1007/s40243-022-00208-1
Table 1.
Meanwhile, the vibration of Ni-O is found at 479 cm-1 [24].
References [1] G.
Energy, vol. 11, no. 1, pp. 71–89, 2022, doi: 10.1007/s40243-022-00208-1
Online since: May 2017
Authors: Abdulwahab Giwa, Saidat Olanipekun Giwa, Abel Adekanmi Adeyi
Figure 1.
Table 1.
ANOVA results of the developed model Source Sum of Squares df Mean Square F Value p-value Model 2840594 5 568118.9 3.12E+09 < 0.0001 significant A-Control horizon 0.002465 1 0.002465 13.51522 0.0079 B-Prediction horizon 1863367 1 1863367 1.02E+10 < 0.0001 AB 0.003127 1 0.003127 17.14806 0.0043 A2 0.000354 1 0.000354 1.9437 0.2059 B2 835420.1 1 835420.1 4.58E+09 < 0.0001 Residual 0.001277 7 0.000182 Lack of Fit 0.001277 3 0.000426 Pure Error 0 4 0 Cor Total 2840594 12 Given in Equation (3) is the modified form of the relationship existing between the integral squared error and the chosen independent variables (that is, the control horizon and the prediction horizon).
References [1] A.
Hapoglu, Adaptive Neuro-Fuzzy Inference Systems (ANFIS) modeling of reactive distillation process, ARPN Journal of Engineering and Applied Sciences, 8 (2013) 473-479
Table 1.
ANOVA results of the developed model Source Sum of Squares df Mean Square F Value p-value Model 2840594 5 568118.9 3.12E+09 < 0.0001 significant A-Control horizon 0.002465 1 0.002465 13.51522 0.0079 B-Prediction horizon 1863367 1 1863367 1.02E+10 < 0.0001 AB 0.003127 1 0.003127 17.14806 0.0043 A2 0.000354 1 0.000354 1.9437 0.2059 B2 835420.1 1 835420.1 4.58E+09 < 0.0001 Residual 0.001277 7 0.000182 Lack of Fit 0.001277 3 0.000426 Pure Error 0 4 0 Cor Total 2840594 12 Given in Equation (3) is the modified form of the relationship existing between the integral squared error and the chosen independent variables (that is, the control horizon and the prediction horizon).
References [1] A.
Hapoglu, Adaptive Neuro-Fuzzy Inference Systems (ANFIS) modeling of reactive distillation process, ARPN Journal of Engineering and Applied Sciences, 8 (2013) 473-479