Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: October 2017
Authors: G. Korotcenkov, B.K. Cho, Vladimir Brinzari, I.A. Pronin, M.H. Ham
Fig. 1.
Table 1.
Vol. 34 (1-2) (2009), p. 1
Ivanov, et al.: Thin Solid Films 479 (2005), p. 38
Vol. 22 (1) (2013), p. 1.
Table 1.
Vol. 34 (1-2) (2009), p. 1
Ivanov, et al.: Thin Solid Films 479 (2005), p. 38
Vol. 22 (1) (2013), p. 1.
Online since: October 2014
Authors: Xuan Tang, Li Li Fang, Feng Lin Huang
Scheme 1.
Catalysis Letters, 2007 119 (1-2) 87-94
Catalysis Today, 2010 157 (1) 101-106
Catalysis Today, 2000 57 (1) 157-166
Catalysis Communications 2005 6(7) 476-479
Catalysis Letters, 2007 119 (1-2) 87-94
Catalysis Today, 2010 157 (1) 101-106
Catalysis Today, 2000 57 (1) 157-166
Catalysis Communications 2005 6(7) 476-479
Online since: July 2015
Authors: Bernhard Wielage, Thomas Seider, Daniel Wett, Daisy Nestler, Guntram Wagner, Thomas Gessner, Jörg Martin
The highest values were obtained using the PI type 1.
A main feature is located at around 230 cm1.
A broad band is found in the range from 550 to 950 cm1 consisting of at least 3 peaks at around 640, 780 and 870 cm1.
References [1] H.
Pradhan, Microstructure charac terization of nanocrystalline Ni3C synthesized by high-energy ball milling, Journal of Alloys and Compounds 479 (2009) 193 [17] S.
A main feature is located at around 230 cm1.
A broad band is found in the range from 550 to 950 cm1 consisting of at least 3 peaks at around 640, 780 and 870 cm1.
References [1] H.
Pradhan, Microstructure charac terization of nanocrystalline Ni3C synthesized by high-energy ball milling, Journal of Alloys and Compounds 479 (2009) 193 [17] S.
Online since: May 2016
Authors: Juraj Bilčík, Robert Sonnenschein, Katarína Gajdošová
Constructional, technological and execution measures are used to control the temperature rising in WCS [1].
Major steps in WCS design process are shown in the diagram in Fig. 1.
Table 1: Limiting crack width [4,5] Hydraulic gradient i =hw/t 1) Limiting crack width wlim [mm] ≤ 10 0,20 > 10 to ≤ 15 0,15 > 15 to ≤ 25 0,10 1) hw – groundwater height t - member thickness (wall, foundation slab) Table 1: Limiting crack width terrain level groundwater level t1 hw11 hw22 t2 Hydraulic gradient i =hw/t 1) Limiting crack width wlim [mm] ≤ 10 0.20 > 10 to ≤ 15 0.15 > 15 to ≤ 25 0.10 1) hw – groundwater height t – element thickness (wall, foundation) Figure 6: Determination of the groundwater gradient and limiting crack width Steel reinforcement will not prevent cracking.
References [1] N.
Beton- und Stahlbetonbau 101, Heft 7/2006, pp. 479-489
Major steps in WCS design process are shown in the diagram in Fig. 1.
Table 1: Limiting crack width [4,5] Hydraulic gradient i =hw/t 1) Limiting crack width wlim [mm] ≤ 10 0,20 > 10 to ≤ 15 0,15 > 15 to ≤ 25 0,10 1) hw – groundwater height t - member thickness (wall, foundation slab) Table 1: Limiting crack width terrain level groundwater level t1 hw11 hw22 t2 Hydraulic gradient i =hw/t 1) Limiting crack width wlim [mm] ≤ 10 0.20 > 10 to ≤ 15 0.15 > 15 to ≤ 25 0.10 1) hw – groundwater height t – element thickness (wall, foundation) Figure 6: Determination of the groundwater gradient and limiting crack width Steel reinforcement will not prevent cracking.
References [1] N.
Beton- und Stahlbetonbau 101, Heft 7/2006, pp. 479-489
Online since: December 2014
Authors: Xin Ping Mao, Ming Tu Ma, Guang Ying Li, Chang Xu Zhao
Wang X.D selected a middle carbon steel with 0.485C, 1.195Mn, 1.185Si, 0.98Ni, 0.21Nb to carry out P-T treating at.400oC and obtained an ultra high strength-ductility with TS³2000MPa, El³10% and TS×El³20GPa%, as shown in Fig.5[12].
References [1] H.
Xu, New processes for steel heat treatment, Heat Treatment, 22 (2007), 1:1-11 [9] T.Y.
Krauss, Observation of Deformation and Transformation Behavior of Retained Austenite in a 0.14C-1.2Si-1.5Mn Steel with Ferrite-Bainite-Austenite Structure , Mat.
Geerlofs etc, Bainite transformation of low carbon Mn–Si TRIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention Materials Science and Engineering A273–275 (1999) 475–479 [24] A.
References [1] H.
Xu, New processes for steel heat treatment, Heat Treatment, 22 (2007), 1:1-11 [9] T.Y.
Krauss, Observation of Deformation and Transformation Behavior of Retained Austenite in a 0.14C-1.2Si-1.5Mn Steel with Ferrite-Bainite-Austenite Structure , Mat.
Geerlofs etc, Bainite transformation of low carbon Mn–Si TRIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention Materials Science and Engineering A273–275 (1999) 475–479 [24] A.
Online since: April 2023
Authors: James Mark M. Gallawan, Chosel P. Lawagon
Additionally, Fig. 1 presents the stress-strain curve of the DRF.
References [1] H.
Sakdirat, Self-healing concrete, vol. 100, no. 1.
Kessler, "Self-healing: A new paradigm in materials design," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 221, no. 4, pp. 479–495, 2007, doi: 10.1243/09544100JAERO172
Sukkathanyawat, "Kinetic Analysis of Durian Rind Pyrolysis Using Model-Free Method," in IOP Conference Series: Earth and Environmental Science, Dec. 2020, vol. 586, no. 1. doi: 10.1088/1755-1315/586/1/012002
References [1] H.
Sakdirat, Self-healing concrete, vol. 100, no. 1.
Kessler, "Self-healing: A new paradigm in materials design," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 221, no. 4, pp. 479–495, 2007, doi: 10.1243/09544100JAERO172
Sukkathanyawat, "Kinetic Analysis of Durian Rind Pyrolysis Using Model-Free Method," in IOP Conference Series: Earth and Environmental Science, Dec. 2020, vol. 586, no. 1. doi: 10.1088/1755-1315/586/1/012002
Online since: August 2023
Authors: Svitlana Shvydka, Atabala M. Babayev, Anton Chernukha, Olena Tarakhno, Olga Skorodumova
Fig. 1.
The composition of the experimental compositions is given in Table 1.
Table 1.
References [1] B.
Emen, The use of sol-gel method for obtaining fire-resistant elastic coatings on cotton fabrics, Materials Science Forum, 1038 (2021) 468–479
The composition of the experimental compositions is given in Table 1.
Table 1.
References [1] B.
Emen, The use of sol-gel method for obtaining fire-resistant elastic coatings on cotton fabrics, Materials Science Forum, 1038 (2021) 468–479
Online since: October 2012
Authors: Zhi Wei Chen, You Lin Xu, Kai Yuen Wong
Fig. 1 shows the wheel-set loading distribution of type-1 train in the annual train spectrum based on the measurement data.
Table 1.
Annual train spectrum of Tsing Ma Bridge Tracks Train types Gross weight (tons) Number of trains per annum Total annual tonnage (tons 106) Proportion of total trains 1 1 334 18980 6.34 0.235 2 332 60225 20.00 0.747 3 326 2555 0.48 0.031 Total 80665 26.80 1.0 2 4 338 18980 6.42 0.232 5 330 60225 19.87 0.737 6 314 1460 0.46 0.018 Total 81760 27.12 1.0 Fig. 1.
References [1] ASCE.
Wind and Structures- An International Journal, 12(6): 479-504 (2009)
Table 1.
Annual train spectrum of Tsing Ma Bridge Tracks Train types Gross weight (tons) Number of trains per annum Total annual tonnage (tons 106) Proportion of total trains 1 1 334 18980 6.34 0.235 2 332 60225 20.00 0.747 3 326 2555 0.48 0.031 Total 80665 26.80 1.0 2 4 338 18980 6.42 0.232 5 330 60225 19.87 0.737 6 314 1460 0.46 0.018 Total 81760 27.12 1.0 Fig. 1.
References [1] ASCE.
Wind and Structures- An International Journal, 12(6): 479-504 (2009)
Online since: July 2022
Authors: Benjamin Klusemann, Zina Kallien, Arne Roos
Introduction
The technique of friction surfacing (FS) was first named in a patent by Klopstock and Neelands [1] in
1941.
The final sixlayer stack showed approx. 8.7 mm height and 153 mm length, see Fig. 1.
References [1] H.
Metals, 9(4):479, 2019
Chem., 1(4), 2013
The final sixlayer stack showed approx. 8.7 mm height and 153 mm length, see Fig. 1.
References [1] H.
Metals, 9(4):479, 2019
Chem., 1(4), 2013
Online since: July 2024
Authors: Pablo Jhoel Peña Torres, Alvaro Fabrizio Aliaga Guevara, Andre Jhoel Lamas Chavez
Table 1.
Fig. 1.
Parameters f'c (Гm) f’t (Гm) Ec (Гm) α 1 if Γm ≤0.2 (1.3 - 1.5Γm) if 0.20<Γm<0.40 1-Γm 1-0.65Γm β 0.06(1-0.80Γm) 0.12(1-0.80Γm) 0.10(1-0.80Γm) Note.
References [1] Xie, T., & Tam, W.
Residual compressive stress-strain relation of recycled aggregate concrete after exposure to high temperatures. 18(3), pp. 479- 486
Fig. 1.
Parameters f'c (Гm) f’t (Гm) Ec (Гm) α 1 if Γm ≤0.2 (1.3 - 1.5Γm) if 0.20<Γm<0.40 1-Γm 1-0.65Γm β 0.06(1-0.80Γm) 0.12(1-0.80Γm) 0.10(1-0.80Γm) Note.
References [1] Xie, T., & Tam, W.
Residual compressive stress-strain relation of recycled aggregate concrete after exposure to high temperatures. 18(3), pp. 479- 486