[1]
H. Kazi, P. M. Wild, T. N. Moore, M. Sayer, The electromechanical behavior of nichrome (80/20 wt. %) film, Thin Solid Films 433 (2003) 337.
DOI: 10.1016/s0040-6090(03)00390-0
Google Scholar
[2]
M. Petersen, U. Heckmann, R. Bandorf, V. Gwozdz, S. Schnabel, G. Bräuer, C. -P. Klages, Me-DLC films as material for highly sensitive temperature compensated strain gauges, Diamond & Related Materials 20 (2011) 814.
DOI: 10.1016/j.diamond.2011.03.036
Google Scholar
[3]
R. Koppert, D. Goettel, O. Freitag-Weber, G. Schultes, Nickel containing diamond like carbon thin films, Solid State Sciences 11 (2009) 1797.
DOI: 10.1016/j.solidstatesciences.2009.04.022
Google Scholar
[4]
K. Sedláĉková, P. Lobotka, I. Vávra, G. Radnóczi, Structural, electrical and magnetic properties of carbon–nickel composite thin films. Carbon 43 (2005) 2192.
DOI: 10.1016/j.carbon.2005.03.035
Google Scholar
[5]
R. Koppert, S. Uhlig, H. Schmid-Engel, D. Göttel, A. -C. Probst, G. Schultes, U. Werner, Structural and physical properties of highly piezoresistive nickel containing hydrogenated carbon thin films, Diamond & Related Materials 25 (2012) 50.
DOI: 10.1016/j.diamond.2012.01.031
Google Scholar
[6]
S. Sinharoy, L. L. Levenson, The formation and decomposition of nickel carbide in evaporated nickel films on graphite, Thin Solid Films, 53 (1978) 31.
DOI: 10.1016/0040-6090(78)90367-x
Google Scholar
[7]
K. Ellmer, R. Wendt, D. c. and r. f. (reactive) magnetron sputtering of ZnO: Al films from metallic and ceramic targets: a comparative study, Surface and Coatings Technology 93 (1997) 21.
DOI: 10.1016/s0257-8972(97)00031-5
Google Scholar
[8]
C. G. Sridhar, R. Chow, G. Nocerino, Sputter deposition of refractory metal silicides from cold-pressed vacuum-sintered targets, Thin Solid Films, 140 (1986) 51.
DOI: 10.1016/0040-6090(86)90158-6
Google Scholar
[9]
V. Mitin, Y. Mankelevich, A. Pal, T. Rakhimova, A. Ryabinkin, A. Serov, A. Mitin, N. Krasnobaev, Features of DC magnetron sputtering of mosaic copper-graphite targets, 13th International Conference on Plasma Surface Engineering, September 10-14, 2012, Garmisch-Partenkirchen, Germany, Proceedings, 227.
DOI: 10.1134/s1063785013010203
Google Scholar
[10]
B. Wielage, D. Nestler, H. Steger, L. Kroll, J. Tröltzsch, S. Nendel, CAPAAL and CAPET – new materials of high-strength, high-stiff hybrid laminates, in M. Fathi (Ed. ): Integrated Systems, Design and Technology 2010: Knowledge Transfer in New Technologies (2010).
DOI: 10.1007/978-3-642-17384-4_3
Google Scholar
[11]
F. C. Fonseca, A. S. Ferlauto, F. Alvarez, G. F. Goya, R. F. Jardim, Morphological and magnetic properties of carbon–nickel nanocomposite thin films. Journal of Applied Physics 97 (2005) 044313.
DOI: 10.1063/1.1852702
Google Scholar
[12]
M. Rubin, C. B. Hopper, N. -H. Cho, B. Bhushan, Optical and mechanical properties of DC sputtered carbon films, Journal of Materials Research, 5 (1990) 2538.
DOI: 10.1557/jmr.1990.2538
Google Scholar
[13]
S. Sinharoy, L. L. Levenson, The formation and decomposition of nickel carbide in evaporated nickel films on graphite, Thin Solid Films 53 (1978) 31.
DOI: 10.1016/0040-6090(78)90367-x
Google Scholar
[14]
C. Sella, M. Kaabouchi, R. Krishnan, M. Naili, Microstructural and magnetic characterization of the interfaces in Ni/C and Co/C multilayers, Vacuum 41, 4-6 (1990) 1247.
DOI: 10.1016/0042-207x(90)93924-8
Google Scholar
[15]
J. Shi, O. Nittono, Formation of Ni3C nanocrystallites in codeposited Ni-C films, Journal of material science letters 15 (1996) 928.
DOI: 10.1007/bf00241428
Google Scholar
[16]
B. Ghosh, H. Dutta and S. K. Pradhan, Microstructure charac terization of nanocrystalline Ni3C synthesized by high-energy ball milling, Journal of Alloys and Compounds 479 (2009) 193.
DOI: 10.1016/j.jallcom.2008.12.133
Google Scholar
[17]
S. Uhlig, R. Struis, H. Schmid-Engel, J. Bock, A. -C. Probst, O. Freitag-Weber, I. Zizak, R. Chernikov, G. Schultes, Piezoresistive Ni: a-C: H thin films containing hcp-Ni or Ni3C investigated by XRD, EXAFS, and wavelet analysis, Diamond & Related Materials 34 (2013).
DOI: 10.1016/j.diamond.2013.01.013
Google Scholar
[18]
S. Pacley, W. C. Mitchel, P. T. Murray, D. Anderson, H. E. Smith, E. Beck-Millerton, A. A. Voevodin, The role of the nickel catalyst and its chemical and structural evolution during carbon nanopearl growth, Journal of Electronic Materials 42, 3 (2013).
DOI: 10.1007/s11664-012-2367-0
Google Scholar
[19]
A. Furlan, J. Lu, L. Hultman, U. Jansson, M. Magnuson, Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites, Journal of Physics: Condensed Matter 26 (2014) 415501.
DOI: 10.1088/0953-8984/26/41/415501
Google Scholar
[20]
A. Delamoreanu, C. Rabot, C. Vallee, A. Zenasni, Wafer scale catalytic growth of graphene on nickel by solid carbon source. Carbon 66 (2014) 48.
DOI: 10.1016/j.carbon.2013.08.037
Google Scholar
[21]
T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, A. C. Ferrari, Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Physical Review B 79 (2009).
DOI: 10.1103/physrevb.79.205433
Google Scholar