Preparation of Ni-C Thin Films for Strain Sensor Applications in New Hybrid Laminates with Thermoplastic Matrix

Article Preview

Abstract:

Hybrid laminates with thermoplastic matrices offer clear advantages over laminates based on thermosetting resins. These include the formability, recyclability as well as the suitability for mass production, to name a few. The inline integration of smart systems like sensors and actuators in the hybrid laminates during the hot-pressing process is one of the long-term objectives of the Federal Cluster of Excellence MERGE. This work aims to deposit Ni-C thin films by dc magnetron sputtering on polyimide substrates for the application as strain sensors in hybrid laminates. During the first step hybrid laminates containing different polyimide foils were prepared by hot-pressing, this was followed by the mechanical testing and selection of the most suitable polyimide substrate for the Ni-C thin film deposition. The second part consisted of depositing Ni-C thin films by means of dc magnetron sputtering and utilising different Ni-C plug targets. The films were characterised regarding their growth rate, composition, structure and temperature coefficient of electrical resistance.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

548-555

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kazi, P. M. Wild, T. N. Moore, M. Sayer, The electromechanical behavior of nichrome (80/20 wt. %) film, Thin Solid Films 433 (2003) 337.

DOI: 10.1016/s0040-6090(03)00390-0

Google Scholar

[2] M. Petersen, U. Heckmann, R. Bandorf, V. Gwozdz, S. Schnabel, G. Bräuer, C. -P. Klages, Me-DLC films as material for highly sensitive temperature compensated strain gauges, Diamond & Related Materials 20 (2011) 814.

DOI: 10.1016/j.diamond.2011.03.036

Google Scholar

[3] R. Koppert, D. Goettel, O. Freitag-Weber, G. Schultes, Nickel containing diamond like carbon thin films, Solid State Sciences 11 (2009) 1797.

DOI: 10.1016/j.solidstatesciences.2009.04.022

Google Scholar

[4] K. Sedláĉková, P. Lobotka, I. Vávra, G. Radnóczi, Structural, electrical and magnetic properties of carbon–nickel composite thin films. Carbon 43 (2005) 2192.

DOI: 10.1016/j.carbon.2005.03.035

Google Scholar

[5] R. Koppert, S. Uhlig, H. Schmid-Engel, D. Göttel, A. -C. Probst, G. Schultes, U. Werner, Structural and physical properties of highly piezoresistive nickel containing hydrogenated carbon thin films, Diamond & Related Materials 25 (2012) 50.

DOI: 10.1016/j.diamond.2012.01.031

Google Scholar

[6] S. Sinharoy, L. L. Levenson, The formation and decomposition of nickel carbide in evaporated nickel films on graphite, Thin Solid Films, 53 (1978) 31.

DOI: 10.1016/0040-6090(78)90367-x

Google Scholar

[7] K. Ellmer, R. Wendt, D. c. and r. f. (reactive) magnetron sputtering of ZnO: Al films from metallic and ceramic targets: a comparative study, Surface and Coatings Technology 93 (1997) 21.

DOI: 10.1016/s0257-8972(97)00031-5

Google Scholar

[8] C. G. Sridhar, R. Chow, G. Nocerino, Sputter deposition of refractory metal silicides from cold-pressed vacuum-sintered targets, Thin Solid Films, 140 (1986) 51.

DOI: 10.1016/0040-6090(86)90158-6

Google Scholar

[9] V. Mitin, Y. Mankelevich, A. Pal, T. Rakhimova, A. Ryabinkin, A. Serov, A. Mitin, N. Krasnobaev, Features of DC magnetron sputtering of mosaic copper-graphite targets, 13th International Conference on Plasma Surface Engineering, September 10-14, 2012, Garmisch-Partenkirchen, Germany, Proceedings, 227.

DOI: 10.1134/s1063785013010203

Google Scholar

[10] B. Wielage, D. Nestler, H. Steger, L. Kroll, J. Tröltzsch, S. Nendel, CAPAAL and CAPET – new materials of high-strength, high-stiff hybrid laminates, in M. Fathi (Ed. ): Integrated Systems, Design and Technology 2010: Knowledge Transfer in New Technologies (2010).

DOI: 10.1007/978-3-642-17384-4_3

Google Scholar

[11] F. C. Fonseca, A. S. Ferlauto, F. Alvarez, G. F. Goya, R. F. Jardim, Morphological and magnetic properties of carbon–nickel nanocomposite thin films. Journal of Applied Physics 97 (2005) 044313.

DOI: 10.1063/1.1852702

Google Scholar

[12] M. Rubin, C. B. Hopper, N. -H. Cho, B. Bhushan, Optical and mechanical properties of DC sputtered carbon films, Journal of Materials Research, 5 (1990) 2538.

DOI: 10.1557/jmr.1990.2538

Google Scholar

[13] S. Sinharoy, L. L. Levenson, The formation and decomposition of nickel carbide in evaporated nickel films on graphite, Thin Solid Films 53 (1978) 31.

DOI: 10.1016/0040-6090(78)90367-x

Google Scholar

[14] C. Sella, M. Kaabouchi, R. Krishnan, M. Naili, Microstructural and magnetic characterization of the interfaces in Ni/C and Co/C multilayers, Vacuum 41, 4-6 (1990) 1247.

DOI: 10.1016/0042-207x(90)93924-8

Google Scholar

[15] J. Shi, O. Nittono, Formation of Ni3C nanocrystallites in codeposited Ni-C films, Journal of material science letters 15 (1996) 928.

DOI: 10.1007/bf00241428

Google Scholar

[16] B. Ghosh, H. Dutta and S. K. Pradhan, Microstructure charac terization of nanocrystalline Ni3C synthesized by high-energy ball milling, Journal of Alloys and Compounds 479 (2009) 193.

DOI: 10.1016/j.jallcom.2008.12.133

Google Scholar

[17] S. Uhlig, R. Struis, H. Schmid-Engel, J. Bock, A. -C. Probst, O. Freitag-Weber, I. Zizak, R. Chernikov, G. Schultes, Piezoresistive Ni: a-C: H thin films containing hcp-Ni or Ni3C investigated by XRD, EXAFS, and wavelet analysis, Diamond & Related Materials 34 (2013).

DOI: 10.1016/j.diamond.2013.01.013

Google Scholar

[18] S. Pacley, W. C. Mitchel, P. T. Murray, D. Anderson, H. E. Smith, E. Beck-Millerton, A. A. Voevodin, The role of the nickel catalyst and its chemical and structural evolution during carbon nanopearl growth, Journal of Electronic Materials 42, 3 (2013).

DOI: 10.1007/s11664-012-2367-0

Google Scholar

[19] A. Furlan, J. Lu, L. Hultman, U. Jansson, M. Magnuson, Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites, Journal of Physics: Condensed Matter 26 (2014) 415501.

DOI: 10.1088/0953-8984/26/41/415501

Google Scholar

[20] A. Delamoreanu, C. Rabot, C. Vallee, A. Zenasni, Wafer scale catalytic growth of graphene on nickel by solid carbon source. Carbon 66 (2014) 48.

DOI: 10.1016/j.carbon.2013.08.037

Google Scholar

[21] T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, A. C. Ferrari, Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Physical Review B 79 (2009).

DOI: 10.1103/physrevb.79.205433

Google Scholar