Experimental and Numerical Studies on Integration Thermoplastic Composite Compatible Piezoelectric Ceramics for Actuatory Application of Cylindrical Hollow Structures

Article Preview

Abstract:

Regarding the economical use of fiber-reinforced plastics (FRP) as a construction material for structural components whose additional value caused not only in their high specific mechanical properties. Due to the layerwise structure definition of continuous fiber reinforced composites the corresponding production technologies offers a high potential for integration of additional functional elements. Past efforts to the integration of functions in fiber-reinforced composites usual provide in front of a passive use of the piezoelectric effect (eg. structural-health monitoring). Through efficient and structurally defined using of piezoceramic actuators, the planar structure topology of cylindrical hollow FRP profiles can be actively influenced. Based on experimental studies on the definition of basic concepts for the integration of thermoplastic compatible piezoceramic modules (TPM) in fiber composite tubular segments, this paper deals with the understanding and performance capabilities of such actuarical hollow frp structures. The selective excitation and manipulation of the vibration behavior of such rotationally symmetric structures serves for generation of wave effects with radial translational characteristic. The performed experimental studies on the structural behavior of active piezo integral pipe segments are abstracted and compared by means of numerical simulations using multi-physical elements.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

556-562

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures, Composite Structures 92 (2010) 2793–2810.

DOI: 10.1016/j.compstruct.2010.05.003

Google Scholar

[2] S. Adhikari, M.I. Friswell, D.J. Inman, Piezoelectric energy harvesting from broadband random vibrations, Smart Mater. Struct. 18 (2009) 115005.

DOI: 10.1088/0964-1726/18/11/115005

Google Scholar

[3] M. Gude, Modellierung von faserverstärkten Verbundwerkstoffen und funktionsintegrierenden Leichtbaustrukturen für komplexe Beanspruchungen, TU Dresden, Habilitation, (2008).

Google Scholar

[4] T. Heber, Integrationsgerechte Piezokeramik-Module und großserienfähige Fertigungs-technologien für multifunktionale Thermoplastverbundstrukturen, TU Dresden, Dissertation, (2011).

Google Scholar

[5] O. Täger, M. Dannemann, W. Hufenbach, Analytical study of the structural-dynamics and sound radiation of anisotropic multilayered fibre-reinforced composites, Journal of Sound and Vibration 342 (2015) 57–74.

DOI: 10.1016/j.jsv.2014.12.040

Google Scholar

[6] T. Heber, M. Gude, W. Hufenbach, Production process adapted design of thermoplatic compatible piezoceramic modules, Composites: Part A 59 (2014) 70-77.

DOI: 10.1016/j.compositesa.2014.01.002

Google Scholar

[7] W. Hufenbach, M. Gude, T. Heber, Design and testing of novel piezoceramic modules for adaptive thermoplastic composite structures, Smart Materials and Structures 18 (2009) 045012.

DOI: 10.1088/0964-1726/18/4/045012

Google Scholar

[8] W.G. Drossel, S. Hensel, M. Nestler, L. Lachmann, Evaluation of Actuator, Sensor, and Fatigue Performance of Piezo-Metal-Composites, IEEE Sensors Journal 14 (2014) 2129-2137.

DOI: 10.1109/jsen.2013.2296143

Google Scholar