Process-Integrated Manufacturing and Embedding of Novel Piezoelectric Sensor Modules into Glass Fibre-Reinforced Polyurethane Composite Structures

Article Preview

Abstract:

Due to an increasing use of composite materials in various applications and related open questions concerning structural health monitoring and damage detection, the realisation of function integrating lightweight structures with sensory properties is subject of numerous research activities. Main objective is the transfer of already in laboratory and prototype scale established methods for the integration of sensory elements on serial applications. Here, combining the previously separated processing steps sensor manufacturing, component manufacturing and sensor integration can help to make a significant step forwards. Therefore, as part of the activities in the Collaborative Research Centre/Transregio (CRC/TR) 39, a highly productive spray coat method based on the long fibre injection (LFI) process is developed, which allows the process-integrated manufacturing and embedding of novel piezoelectric sensor modules into fibre-reinforced polyurethane composite structures.Based on studies on the technological implementation of the newly developed process, theoretical and experimental studies for contacting and polarisation of the novel sensor elements are presented. In addition, the characterisation of the adhesion properties of thermoplastic films on the used fibre-reinforced polyurethane composites is part of the presented research to evaluate the possibility of integrating thermoplastic-compatible piezo modules for actuator applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

563-570

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Edery-Azulay, H. Abramovich, Active damping of piezo-composite beams, Composite Structures 74 (2006) 458-466.

DOI: 10.1016/j.compstruct.2005.04.026

Google Scholar

[2] A. Belloli, D. Niederberger, S. Pietrzko, M. Morari, P. Ermanni, Structural vibration control via R-L shunted active fiber composites, Journal of Intelligent Material Systems and Structures 18 (2007) 275-287.

DOI: 10.1177/1045389x06066029

Google Scholar

[3] S.R. Anton, A. Erturk, D.J. Inman, Multifunctional self-charging structures using piezoceramics and thin-film batteries, Smart Materials and Structures 19 (2010) 115021 (15pp).

DOI: 10.1088/0964-1726/19/11/115021

Google Scholar

[4] W. Hufenbach, M. Gude, S. Geller, Cellular fibre-reinforced polyurethane composites with sensory properties, Advanced Engineering Materials 16 (2014), 3, 272-275.

DOI: 10.1002/adem.201300080

Google Scholar

[5] A. Weder, S. Geller, A. Heinig, T. Tyczynski, W. Hufenbach, W. -J. Fischer, A novel technology for the high-volume production of intelligent composite structures with integrated piezoceramic sensors and electronic components, Sensors & Actuators A: Physical 202 (2013).

DOI: 10.1016/j.sna.2013.01.050

Google Scholar

[6] A. Weder, S. Geller, W. -J. Fischer, Angepasste Piezosensorelektronik und integrierte drahtlose Sensornetzwerke zur Herstellung intelligenter Leichtbauteile, Proceedings of Mikrosystemtechnik Kongress, VDE Verlag, Berlin, 2013, 540-543.

Google Scholar

[7] K. Hohlfeld, S. Gebhardt, A. Schönecker, A. Michaelis, PZT components derived from polysulphone spinning process, Advances in Applied Ceramics (2014), DOI: 10. 1179/1743676114Y. 0000000229.

DOI: 10.1179/1743676114y.0000000229

Google Scholar

[8] H. Jostmeyer, SRIM: Schritte zur Automatisierung, Polyurethantechnik 1998, VDI Verlag, Düsseldorf, 1998, pp.87-95.

Google Scholar

[9] W. Frehsdorf, W. Söchtig, High Requirements – Low Investment Costs. Kunststoffe plast europe, Vol. 91 (2001), 3, 23-25.

Google Scholar

[10] W. Hufenbach, W. -J. Fischer, M. Gude, S. Geller, , T. Tyczynski, Processing studies for the development of a manufacture process for intelligent lightweight structures with integrated sensor systems and adapted electronics, Procedia Materials Science 2 (2013).

DOI: 10.1016/j.mspro.2013.02.010

Google Scholar

[11] T. Heber, M. Gude, W. Hufenbach, Production process adapted design of thermoplastic-compatible piezoceramic modules, Composites Part A: Applied Science and Manufacturing 59 (2014) 70-77.

DOI: 10.1016/j.compositesa.2014.01.002

Google Scholar

[12] U. Younes, Recent Advances in Class A, Polyurethane Long Fiber Injection (LFI) Composites, Automot Plast News 39 (2000), 3, 8-14.

Google Scholar

[13] J. Rosenberger, Class-A Folie PUR hinterschäumt für Nutzfahrzeug-Außenteile, in: PUR 2009, VDI Verlag, Düsseldorf, 2009, 21-32.

Google Scholar

[14] H. Häberle, R. Mohr, Kühlerblende in Hochglanz-Optik, Kunststoffe im Automobilbau, VDI Verlag, Düsseldorf, 2008, 221-247.

Google Scholar

[15] S. Geller, P. Neumeister, M. Gude, T. Tyczynski, Studies on the polarisation behaviour of novel piezoelectric sensor modules, Sensors & Actuators A: Physical 218 (2014) 162-166.

DOI: 10.1016/j.sna.2014.08.005

Google Scholar