Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: September 2016
Authors: Meiyanathan Meignanamoorthy, Manickam Ravichandran, Sundaram Dineshkumar
The sintering was done by using electric muffle furnace at a temperature of 5500C for 1 hour.
The high compressive strength was obtained for the Al-5%TiO2 composite. 1.
Fig.1.
Table 1.
Alloys Compds,479 (2009) 334–341
The high compressive strength was obtained for the Al-5%TiO2 composite. 1.
Fig.1.
Table 1.
Alloys Compds,479 (2009) 334–341
Online since: December 2013
Authors: Zhong Wei Li
Selected the displacement of rock bolt from the fixed end 0.5m, 1.0m, 1.5m, 2.0m location as the research object.
References [1] Kang H, Wu Y, Gao F.
The 6th international conference on mining science and technology. 479-85 [3] Shan R, Zhou J, Xia Y, Liu X, Jia L.
Tunnelling and Underground Space Technology.1998, 13(1): 15-21
International Journal of Rock Mechanics and Mining Sciences. 2009, 46(1): 107-114
References [1] Kang H, Wu Y, Gao F.
The 6th international conference on mining science and technology. 479-85 [3] Shan R, Zhou J, Xia Y, Liu X, Jia L.
Tunnelling and Underground Space Technology.1998, 13(1): 15-21
International Journal of Rock Mechanics and Mining Sciences. 2009, 46(1): 107-114
Online since: March 2015
Authors: Olga D. Arefieva, Ludmila A. Zemnukhova, Anastasia A. Kovshun
Table 1 lists the description of silica-containing substances extracted from S1.
Table 1.
For example, Ssp may be varied from 5.9 m2/g to 479 m2/g as in [6].
Fig. 1.
Maiorov: Inorganic Materials Vol. 50(1) (2014), p. 75-81
Table 1.
For example, Ssp may be varied from 5.9 m2/g to 479 m2/g as in [6].
Fig. 1.
Maiorov: Inorganic Materials Vol. 50(1) (2014), p. 75-81
Online since: November 2016
Authors: Deepa Prabhu, Padmalatha Padmalatha
Table 1.
Fig. 1.
Electrochemical parameters obtained from Tafel polarization measurements T (℃) Conc. of inhibitor (g L−1) Ecorr (mVvs SCE) icorr (m A cm−2) ba (m V dec−1) −bc (m V dec−1) IE (%) 30 Blank −156 3.26 485 472 − 0.05 −159 1.78 493 501 45.33 0.1 −159 1.60 495 486 50.78 0.2 −158 1.46 494 478 55.14 0.3 −158 1.14 498 471 65.01 0.4 −158 0.97 499 464 70.11 40 Blank −161 4.24 489 489 − 0.05 −160 1.95 491 485 53.98 0.1 −159 1.65 492 483 61.11 0.2 −158 1.49 494 480 64.77 0.3 −158 1.27 496 479 69.99 0.4 −157 1.10 499 478 74.08 50 Blank −162 5.50 488 480 − 0.05 −161 2.04 495 478 62.94 0.1 −160 1.72 498 476 68.67 0.2 −159 1.50 499 473 72.67 0.3 −158 1.23 502 472 77.67 0.4 −156 1.00 505 440 81.87 Table 3.
Activation and thermodynamic parameters for the corrosion of 6063 Al alloy Activation parameters Conc. of inhibitor (g L−1) Ea (kJ mol−1) ∆Ha (kJ mol−1) ∆Sa (J mol−1 K−1) Blank 21.61 19.05 −148.69 0.05 6.96 9.57 −214.05 0.1 4.75 7.36 −223.78 0.2 4.51 3.11 −232.09 0.3 1.82 1.90 −246.98 0.4 0.50 0.78 −255.46 Thermodynamic parameters −∆Goads (kJ mol−1) ∆Hoads (kJ mol−1) ∆Soads (J mol−1 K−1) 17.60 23.92 −136.87 18.10 19.02 19.54 20.30 Adsorption behavior.
References [1] C.
Fig. 1.
Electrochemical parameters obtained from Tafel polarization measurements T (℃) Conc. of inhibitor (g L−1) Ecorr (mVvs SCE) icorr (m A cm−2) ba (m V dec−1) −bc (m V dec−1) IE (%) 30 Blank −156 3.26 485 472 − 0.05 −159 1.78 493 501 45.33 0.1 −159 1.60 495 486 50.78 0.2 −158 1.46 494 478 55.14 0.3 −158 1.14 498 471 65.01 0.4 −158 0.97 499 464 70.11 40 Blank −161 4.24 489 489 − 0.05 −160 1.95 491 485 53.98 0.1 −159 1.65 492 483 61.11 0.2 −158 1.49 494 480 64.77 0.3 −158 1.27 496 479 69.99 0.4 −157 1.10 499 478 74.08 50 Blank −162 5.50 488 480 − 0.05 −161 2.04 495 478 62.94 0.1 −160 1.72 498 476 68.67 0.2 −159 1.50 499 473 72.67 0.3 −158 1.23 502 472 77.67 0.4 −156 1.00 505 440 81.87 Table 3.
Activation and thermodynamic parameters for the corrosion of 6063 Al alloy Activation parameters Conc. of inhibitor (g L−1) Ea (kJ mol−1) ∆Ha (kJ mol−1) ∆Sa (J mol−1 K−1) Blank 21.61 19.05 −148.69 0.05 6.96 9.57 −214.05 0.1 4.75 7.36 −223.78 0.2 4.51 3.11 −232.09 0.3 1.82 1.90 −246.98 0.4 0.50 0.78 −255.46 Thermodynamic parameters −∆Goads (kJ mol−1) ∆Hoads (kJ mol−1) ∆Soads (J mol−1 K−1) 17.60 23.92 −136.87 18.10 19.02 19.54 20.30 Adsorption behavior.
References [1] C.
Online since: May 2012
Authors: Xian Hua Liu, Yi Ren Lu, Yan Ping Zong, Xiao Xuan Shi, Xi Wen Du
The details are listed in Tab. 1.
Through analyzing the abundance of MS charts, the molecular structure of 2,4,5-TCP and molecular weight, the most likely intermediates such as (1,4-dichloro-Naphthalene), (phthalic acid, isobutyl octadecyl ester), (1,2–Benzenedicarboxylic acid, bis(2-methylpropyl) ester), (1,2-Benzenedicarboxylic acid, mono(2-ethylhexy) ester), etc. are speculated.
(1)
References [1] Bobu Maria,Wilson Steven,Greibrokk Tyge,et al.Chemosphere 63 ( 2006 ) 1723-1723
[2] T.Peternel Igor,Koprivanac Natalija,M.Loncaric Bozic Ana,et al.Journal of Hazardous Materials 148 (2007) 479-480
Through analyzing the abundance of MS charts, the molecular structure of 2,4,5-TCP and molecular weight, the most likely intermediates such as (1,4-dichloro-Naphthalene), (phthalic acid, isobutyl octadecyl ester), (1,2–Benzenedicarboxylic acid, bis(2-methylpropyl) ester), (1,2-Benzenedicarboxylic acid, mono(2-ethylhexy) ester), etc. are speculated.
(1)
References [1] Bobu Maria,Wilson Steven,Greibrokk Tyge,et al.Chemosphere 63 ( 2006 ) 1723-1723
[2] T.Peternel Igor,Koprivanac Natalija,M.Loncaric Bozic Ana,et al.Journal of Hazardous Materials 148 (2007) 479-480
Online since: September 2007
Authors: Yo Kojima, Shigeharu Kamado, Wei Min Gan, Kun Wu, Ming Yi Zheng, Xiao Guang Qiao, Shi Wei Xu
Microstructure and Tensile Properties of a Mg-Zn-Y-Zr Alloy Containing
Quasicrystal Phase Processed by Equal Channel Angular Pressing
ShiWei XU
1
, MingYi ZHENG1, a
, XiaoGuang QIAO
1
and WeiMin GAN
1
,
Kun WU
1, Shigeharu KAMADO2 and Yo.
However, the icosahedral phase formed as a coarse eutectic structure on solidification [1].
Fig. 4 {0002} pole figures in (a) as-extruded, (b) 1-pass ECAPed, (c) 8-pass ECAPed alloy.
References [1] Z.
Forum Vol. 475-479 (2005), p. 469 [4] D.
However, the icosahedral phase formed as a coarse eutectic structure on solidification [1].
Fig. 4 {0002} pole figures in (a) as-extruded, (b) 1-pass ECAPed, (c) 8-pass ECAPed alloy.
References [1] Z.
Forum Vol. 475-479 (2005), p. 469 [4] D.
Online since: November 2012
Authors: Chao Sheng Song, Rong Fan, Zhen Liu, Wen Ji Liu
Table 1 Equivalent supporting stiffness of shaft-bearing system
Pinion
Orientation
X
Y
Z
RX
RY
Equivalent supporting stiffness
N/mm
5.57e+6
3.70e+3
-203.46
4.01e+5
-1.77e+8
3.68e+3
5.55e+6
-511.37
1.76e+8
6.06e+4
-204.19
-511.37
2.64e+06
-2.13e+4
1.27e+4
3.91e+5
1.76e+8
-2.14e+4
4.63e+10
7.51e+7
-1.82e+8
5.68e+04
1.28e+4
7.45e+4
4.64e+10
Gear
Equivalent supporting stiffness
N/mm
5.68e+6
3.79e+3
-213.46
4.61e+5
-1.97e+8
3.78e+3
5.70e+6
-521.37
1.96e+8
6.36e+4
-224.19
-521.37
3.21e+06
-2.53e+4
1.67e+4
4.91e+5
1.96e+8
-2.54e+4
5.12e+10
7.51e+7
-2.02e+8
6.68e+04
1.58e+4
7.05e+4
5.10e+10
Computational results
Numerical integration applying the explicit 4/5th order Runge-Kutta formula by Matlab and the implicit direct integration algorithm by Abaqus were used to solve the lumped parameter dynamic model of the geared rotor system and the FEM dynamic model of the housing sub-system, respectively.
The acceleration responses in time and frequency domain of sensor 1 and sensor 2 as shown in Fig.1 (b) are shown in Fig.4 and 5, respectively.
Also, it can be seen that the vibration peaks of sensor 1 and sensor 2 appear at about 976 Hz and 1953 Hz.
References [1] Mitome, K., T.
Advanced Materials Research, 2012, Vols. 479-481,pp.752-757.
The acceleration responses in time and frequency domain of sensor 1 and sensor 2 as shown in Fig.1 (b) are shown in Fig.4 and 5, respectively.
Also, it can be seen that the vibration peaks of sensor 1 and sensor 2 appear at about 976 Hz and 1953 Hz.
References [1] Mitome, K., T.
Advanced Materials Research, 2012, Vols. 479-481,pp.752-757.
Online since: August 2014
Authors: Jia Li Shentu, Chen Chao Shen, Dong Sheng Shen, Xiao Qing Tao, Mei Zhen Wang
Earthworm survived at 0~16 mg kg-1.
However, on day 4 an obvious increase in the activity of CAT was recorded at 4 mg kg-1 and 8 mg kg-1 PCBs compared to the control.
In comparison with the control, no significant changes in SOD activity were observed on day 4, 8, 16 after exposure to 1-16 mg kg-1 PCBs.
References [1] S.
Vol. 47(1974): p169-479
However, on day 4 an obvious increase in the activity of CAT was recorded at 4 mg kg-1 and 8 mg kg-1 PCBs compared to the control.
In comparison with the control, no significant changes in SOD activity were observed on day 4, 8, 16 after exposure to 1-16 mg kg-1 PCBs.
References [1] S.
Vol. 47(1974): p169-479
Online since: September 2013
Authors: Vladimir Popov, Anna Gorbenko
Maximize:
such that
for each mission M[j],
for each sensor S[i],
for each mission M[j],
where x[i,j] from {0;1}, for each variable x[i,j], y[i,k] from {0;1}, for each variable y[i,k], u[j] from {0;1}, for each variable u[j].
Table 1.
References [1] A.
Sci 6(1):4729 [8] A.
Popov (2012) Advanced Studies in Biology 4(6):479 [29] A.
Table 1.
References [1] A.
Sci 6(1):4729 [8] A.
Popov (2012) Advanced Studies in Biology 4(6):479 [29] A.
Online since: February 2016
Authors: Andrey Yu. Fershalov, Olga Dyakonova, Gennady Alekseev, Alexey Lobanov
Figure 1 presents , and versus for , , , and .
Figure 1: Values , and versus for , , , and .
References [1] L.S.
Usp. 53 (2010) 455-479
Math. 7 (2013) 1-13
Figure 1: Values , and versus for , , , and .
References [1] L.S.
Usp. 53 (2010) 455-479
Math. 7 (2013) 1-13