Pyrolysis of Phenolic Resin by TG-MS and FTIR Analysis

Article Preview

Abstract:

The pyrolysis of phenolic-formaldehyde (PF) resin was studied by TG-MS technique. The structure changes of pyrolysis of PF resin heated to different temperatures were investigated by Fourier-transform infrared rays (FTIR). The experimental results shows that the pyrolysis of PF can be divided into three stages. Ether bonds and unreacted terminal hydroxymethyl groups of the cured resin degradate in the first stage. In the second stage, crosslinks are broken, involving formation of a thermally crosslinked intermediate structure and the breaking of methylene bridges into methyl groups. Cyclodehydration and forming char of phenolic hydroxyl occurs in the third stage. The thermal stability and char yield of resin are depended on the pyrolysis of methylene bridges.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

104-109

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Jia-Min, M. Chen-Chi, Thermal degradation of phenolic resin/silica hybrid creamers, Polym. Degrad. Stab. 69 (2000) 229-235.

Google Scholar

[2] A.H. Basta, M.Z. Sefain and N.A. EI-Wakil, Kinetic Studies on the Pyrolytic Degradation of Phenolic Resin Paper Sheets Using DTA Technique. II. In Situ Formation of Phenol Lignin Formaldehyde in Bagasse Pulp, Polym. Plast. Technol. 33 (1994).

DOI: 10.1080/03602559408013093

Google Scholar

[3] L. Costa, L. R. Montelera, G. Camino, E. D. Weil and E. M. Pearce, Structure-charring relationship in phenol-formaldehyde type resins, Polym. Degrad. Stab. 56 (1997) 23-35.

DOI: 10.1016/s0141-3910(96)00171-1

Google Scholar

[4] C.P. Reghunadhan Nair, R.L. Bindu, K.N. Ninan, Thermal characteristics of addition-cure phenolic resins, Polym. Degrad. Stab. 73 (2001) 251–257.

DOI: 10.1016/s0141-3910(01)00076-3

Google Scholar

[5] E. FITZER and W. SCHAFER, The effect of crosslinking on the formation of glasslike carbons from thermosetting resins, Carbon 8 (1970) 353-364.

DOI: 10.1016/0008-6223(70)90075-8

Google Scholar

[6] Young Jeon Kim, Myung Il Kim, Chang Hun Yun, Ji Young Chang, Chong Rae Park and Michio Inagaki, Comparative study of carbon dioxide and nitrogen atmospheric effects on the chemical structure changes during pyrolysis of phenol-formaldehyde spheres, J. Colloid Interface Sci. 274 (2004).

DOI: 10.1016/j.jcis.2003.12.029

Google Scholar

[7] KRYSTYNA ROCZNIAK, TERESA BIERNACKA and MACIEJ, Some Properties and Chemical Structure of Phenolic Resin and Their Derivatives, J. Appl. Polym. Sci. 28 (1983) 531-542.

DOI: 10.1002/app.1983.070280209

Google Scholar

[8] L.B. Manfredi, O. de la Osa, N. Galego Fernandez and A. Vazquez, Strucutre-properties relationship for resols with different formaldehyde/phenol molar ratio, Polymer 40 (1999) 3867-3875.

DOI: 10.1016/s0032-3861(98)00615-6

Google Scholar

[9] Kimberly, A. Trick and Tony E. Saliba, Mechanism of the pyrolysis of phenolic resin in a carbon/phenolic composite, Carbon, 33 (1995) 1509-1515.

DOI: 10.1016/0008-6223(95)00092-r

Google Scholar

[10] K. A. Trick, T. E. Saliba and S.S. Sandhu, A kinetic model of the pyrolysis of phenolic resin in a carbon / phenolic composite, Carbon 35 (1997) 393-401.

DOI: 10.1016/s0008-6223(97)89610-8

Google Scholar

[11] K. Quchi and H. Hond, Fuel, 38 (1959) 429-431.

Google Scholar

[12] WILLIAM M, JACKSON and ROBER T. COKLEY. High Temperature Oxidative Degradation of Phenol-Formaldehyde Polycondensates, J. Appl. Polym. Sci. 8 (1964) 2163-2193.

DOI: 10.1002/app.1964.070080516

Google Scholar

[13] J.A. Parker and E.L. Winkler, NASA TR R-276, Ames. Research Center, (1967).

Google Scholar

[14] C. Morterra, M.J.D. Low I.R. Studies of Carbons-Ⅶ The pyrolysis of A phenolic-formaldhyde resin, Carbon 23 (1985) 525-530.

DOI: 10.1016/0008-6223(85)90088-0

Google Scholar

[15] Ozaki J, Ohizumi W, Oya A. A TG-MS study of poly (vinyl butyral)/phenol-formaldehyde resin blend fiber. Carbon, 2000, 38(10): 1515-1519.

DOI: 10.1016/s0008-6223(00)00113-5

Google Scholar

[16] Sobera M, Hetper J. Pyrolysis gas chromatography mass spectrometry of cured phenolic resins. J Chromatogr A, 2003, 993(1-2): 131-135.

DOI: 10.1016/s0021-9673(03)00388-1

Google Scholar

[17] Zhang YN, Xu YD, Zhang LT and Cheng LF, Preparation and microstructural evolution of carbon/carbon composites, Mat Sci Eng A 2006, 430(1-2): 9-14.

Google Scholar

[18] Li SJ, Tao YB, Li J and Liu YX, Pyrolysis of PF resin with TG-DSC-FTIR, J Northeast For Univ 2007, 35(6): 56-58.

Google Scholar

[19] Wang Peiming, Xu Qianwei. Technique of materials research, Beijing Science Press, (2005).

Google Scholar

[20] Colthup, N.B., Daly, L.H. and Wiberley, S.E., Introduction to Infrared and Raman Spectroscopy, 3rd, Academic Press Inc., New York, (1990).

Google Scholar

[21] KRYSTYNA ROCZNIAK, TERESA BIERNACKA and MACIEJ SKARZYNSKI, Some Properties and Chemical Structure of Phenolic Resin and Their Derivatives, J. Appl. Polym. Sci. 28 (1983) 531-542.

DOI: 10.1002/app.1983.070280209

Google Scholar

[22] Yang-Fei Chen, Zhi-Qin Chen, Hong-Bo Liu, Effect of the substitution position of methylene group on the thermal degradation of phenolic resin, Acta Polymerica Sinica 5 (2008) 399-404.

DOI: 10.3724/sp.j.1105.2008.00399

Google Scholar