Papers by Author: A.K. Shafura

Paper TitlePage

Abstract: Sol gel immersion method has been used to synthesize magnesium doped zinc oxide (Mg:ZnO) thin film on glass substrate. The morphological of annealed thin film was study using atomic force microscopy (AFM) while UV-Visible spectroscopy was used to examine the optical transmittance properties. The optical band gap was estimated by using Tauc’s method. From the results, the surface roughness was change as annealing temperature increases. The increasing of annealing temperature also affects the transmittance spectra which are shifted to lower wavelength. The optical band gaps of the thin film were varied due to different annealed temperature.
539
Abstract: Semiconductor ZnO nanostructure with low dimension for gas sensing has been studied due to its features such as good sensitivity, selectivity and show fast response in gas sensing detection. This attractive material could be growth in a variety nanostructure such as one-dimensional nanostructure eg; the nanorods, nanowire, nanobelts and nanotubes and two-dimensional (2D) eg; nanosheet, nanodisk and nanoflakes. ZnO can also be tuned to perform a mixture of nanostructure to improve the performance of its detection. This paper provides the report in synthesis of ZnO nanostructure with a simple method at low temperature for sensor application.
415
Abstract: The Sn-doped ZnO thin films were deposited on glass and ITO by sol gel Spin Coating technique. The Structural and electrical properties of Sn-doped ZnO thin films were studied and discussed. The Sn-doped ZnO thin film particle sizes were decreased whenever the doping concentration increased. Besides that, the resistivity 7.7 x 102 Ω.cm was obtained at 2 at.% Sn-doped thin films and aligned ZnO nanorod arrays with large surface area were grown on 2 at.% Sn-doped ZnO film. Therefore, dye sensitized solar cell at 2.0 at.% Sn-doped ZnO thin films with aligned ZnO Nanorod arrays have improved in the photocurrent density and conversion efficiency.
281
Abstract: In this paper, the nanostructured Sn-doped ZnO thin films were prepared by Spin coating technique on glass substrates at various Sn doping of 0, 1, 1.5, 1, 2.0 and 3 at.%. The structural, optical and electrical properties were characterized by field emission scanning electron microscopy (FESEM), X-Ray Diffraction (XRD), UV-Vis-NIR and I-V measurement, respectively. The surface morphology reveals that the average particle size of nanostructured Sn-doped ZnO thin films decreased as the Sn concentrations increased. The results show all films are transparent in the visible region with average transmittance above 88%. Meanwhile, the resistivity of Sn-soped ZnO thin films was decreased when the Sn concentrations increased. Among all of Sn-doped ZnO thin films, the thin films doped with 2 at.% shows the optimum properties of average resistivity and transmittance were 7.7 x 102 Ω.Cm and 96%, respectively.
276
Showing 1 to 4 of 4 Paper Titles