Investigation of Heat Transfer Enhancement Effect on Normal and Nano Coated Wick Structure Heat Pipes-A Comparative Assessment

Article Preview

Abstract:

Removal of heat generation is an important characteristic needs to be considered in electromechanical and electronic devices which improve the stability and feasibility of system. Despite numerous cooling methods, heat pipes are recent updating in research line. Heat pipes are one of the super conducting medium of heat energy and it is being used as an equipment to absorb more heat through phase change process of cooling medium circulated in it. It ensures the direct enhancement in heat transfer capacity and characteristics. Nowadays, improvement of the thermal performance in heat pipes getting up with various technologies, especially combination of heat pipe and Nano fluids. It has been experimentally practiced and various results are observed by previous researches that wick structure also a part of reason in improvement. The aim of this research work is to analyze the influence of wick material to improve heat transfer characteristics in heat pipes. In addition, combination of nano coated wick material with heat pipes is comparatively analyzed. From the final observed results it was found that, the best combination of wick material is supporting the better cooling requirements in electronic devices.

You might also be interested in these eBooks

Info:

Pages:

191-198

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.H. Oh, M.K. Lee and S.H. Jeong, Design and fabrication of a metallic micro-heat pipe based on high-aspect-ratio micro channels, Heat Transfer Engineering, 28(8-9) (2007) 772-778.

DOI: 10.1080/01457630701328585

Google Scholar

[2] R. Kempers, A.J. Robinson, D. Ewing and C.Y. Ching, Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe, International Journal of Heat and Mass Transfer, 51(1) (2008) 6039-6046.

DOI: 10.1016/j.ijheatmasstransfer.2008.04.001

Google Scholar

[3] Shwin Chung Wong, Jhan Hong Liou and Chia Wei Chang, Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes, International Journal of Heat and Mass Transfer, 53(1-2) (2010) 3792-3798.

DOI: 10.1016/j.ijheatmasstransfer.2010.04.031

Google Scholar

[4] J.H. Liou, C.W. Chang, Chi Chao and S.C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, International Journal of Heat Mass Transfer, 53(1-2) (2010) 1498-1506.

DOI: 10.1016/j.ijheatmasstransfer.2009.11.046

Google Scholar

[5] R. Ranjan, J.Y. Murthy and S.V. Garimella, Analysis of the wicking and thin-film evaporation characteristics of wick microstructures, ASME Journal of Heat Transfer, 131(10) (2009) 10-17.

DOI: 10.1115/1.3160538

Google Scholar

[6] Madhusree Kole and T.K. Dey, Thermal performance of screen mesh wick heat pipes using water-based copper Nano fluids, Applied Thermal Engineering, 50 (2013) 763-770.

DOI: 10.1016/j.applthermaleng.2012.06.049

Google Scholar

[7] Ram Ranjan, Jayathi Y. Murthy and Suresh V. Garimella, A micro scale model for thin-film evaporation in capillary wick structures, International Journal of Heat and Mass Transfer, 54(1) (2011) 169-179.

DOI: 10.1016/j.ijheatmasstransfer.2010.09.037

Google Scholar

[8] G. Kumaresan, S. Venkatachalapathy, Lazarus Godson Asirvatham and Somchai Wongwises, Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids, Int. Communications in Heat and Mass Transfer, 57(1) (2014) 208-215.

DOI: 10.1016/j.icheatmasstransfer.2014.08.001

Google Scholar

[9] N. Putra, W.N. Septiadi, H. Rahman and R. Irwansyah, Thermal performance of screen mesh wick heat pipes with nanofluids, Experimental Thermal Fluid Science, 40(1) (2012) 10-17.

DOI: 10.1016/j.expthermflusci.2012.01.007

Google Scholar

[10] R. Kempers, D. Ewing and Ching, Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes, Applied Thermal Engg., 26 (2006) 589-595.

DOI: 10.1016/j.applthermaleng.2005.07.004

Google Scholar

[11] Frederic Lefevre, Jean Baptiste Conrard, Martin Reynaud and Jocelyn Bonjour, Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure, Applied Thermal Engineering, 37 (2012) 95-102.

DOI: 10.1016/j.applthermaleng.2011.11.022

Google Scholar

[12] Z.H. Liu, Y.Y. Li and R. Bao, Thermal performance of inclined grooved heat pipes using nanofluids, International Journal of Thermal Sciences, 49 (2010) 1680-1687.

DOI: 10.1016/j.ijthermalsci.2010.03.006

Google Scholar

[13] K.H. Do and Jang, Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick, Int. Journal of Heat Mass Transfer, 53 (2010) 2183-2192.

DOI: 10.1016/j.ijheatmasstransfer.2009.12.020

Google Scholar

[14] S. Nallusamy, Thermal conductivity analysis and characterization of copper oxide nanofluids through different techniques, Journal of Nano Research, 40 (2016) 102-112.

DOI: 10.4028/www.scientific.net/jnanor.40.105

Google Scholar

[15] S.W. Kang, W.C. Wei, S.H. Tsa and C.C. Huang, Experimental investigation of nanofluids on sintered heat pipe thermal performance, Applied Thermal Engineering, 29 (2009) 973-979.

DOI: 10.1016/j.applthermaleng.2008.05.010

Google Scholar

[16] R.R. Riehl and N.D. Santos, Water copper nanofluids application in an open loop pulsating heat pipe, Applied Thermal Engineering, 42 (2011) 6-10.

DOI: 10.1016/j.applthermaleng.2011.01.017

Google Scholar

[17] A. Brusly Solomon, K. Ramachandran and B.C. Pillai, Thermal performance of a heat pipe with nanoparticles coated wick, Applied Thermal Engineering, 36 (2012) 106-112.

DOI: 10.1016/j.applthermaleng.2011.12.004

Google Scholar

[18] G.S. Wang, Song and Liu, Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids, Experimental Thermal Fluid Science, 34 (2010) 1415-1421.

DOI: 10.1016/j.expthermflusci.2010.07.004

Google Scholar

[19] R. Saleh, N. Putra, S.P. Prakoso and W.N. Septiadi, Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO nanofluids, International Journal of Thermal Sciences, 63 (2013) 125-132.

DOI: 10.1016/j.ijthermalsci.2012.07.011

Google Scholar

[20] M.K. Moraveji and S. Razvarz, Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance, Int. Communication Heat Mass Transfer, 39 (2012) 1444-1448.

DOI: 10.1016/j.icheatmasstransfer.2012.07.024

Google Scholar

[21] L.G. Asirvatham, R. Nimmagadda and S. Wongwises, Heat transfer performance of screen mesh wick heat pipes using silver water nanofluid, International Journal of Heat Mass Transfer, 60 (2013) 201-209.

DOI: 10.1016/j.ijheatmasstransfer.2012.11.037

Google Scholar

[22] Y.H. Hung, T.P. Teng and B.G. Lin, Evaluation of the thermal performance of a heat pipe using alumina nanofluids, Experimental Thermal Fluid Sciences, 44 (2013) 504-511.

DOI: 10.1016/j.expthermflusci.2012.08.012

Google Scholar

[23] C. Oshman et al., The development of polymer based flat heat pipes, Journal of Micro Electro Mechanical Systems, 20 (2011) 410-417.

Google Scholar

[24] Geir Hansen, Erling Næss and Kolbeinn Kristjansson, Sintered nickel powder wicks for flat vertical heat pipes, Energies, 8 (2015) 2337-2357.

DOI: 10.3390/en8042337

Google Scholar

[25] D. Deng et al., Evaluation of capillary performance of sintered porous wicks for loop heat pipe, Experimental Thermal Fluid Sciences, 50 (2013) 1-9.

DOI: 10.1016/j.expthermflusci.2013.04.014

Google Scholar

[26] S. Nallusamy, Characterization of Al2O3/water nanofluid through shell and tube heat exchangers over parallel and counter flow, Journal of Nano Research, 45 (2017) 155-163.

DOI: 10.4028/www.scientific.net/jnanor.45.155

Google Scholar

[27] H. Do, K.H.J. Ha and S.P. Jang, Thermal resistance of screen mesh wick heat pipe using the water-based Al2O3 nanofluids, International Journal of Heat and Mass Transfer, 25(25-26) (2010) 5888-5894.

DOI: 10.1016/j.ijheatmasstransfer.2010.07.050

Google Scholar