A Comparative Study on the Phase Structure, Optical and NIR Reflectivity of BaFe12O19 Nano-Pigments by the Traditional and Modified Polyacrylamide Gel Method

Article Preview

Abstract:

Barium hexaferrite (BaFe12O19) nano- pigment is a pigment with high near infrared reflection in the wavelength range of 1400-2500 nm. The BaFe12O19 nano- pigments were synthesized by the traditional and modified polyacrylamide gel method and characterized by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses, X-ray powder diffraction (XRD), fourier transform infrared (FTIR), transmission electron microscopy (TEM), and UV-Visible spectrophotometer. The physicochemical properties of BaFe12O19 nanopigments are strongly dependent on the synthesis route. The introduction of carbon particles into the BaFe12O19 precursor accelerates the formation of BaFe12O19 phase, reduces its particle diameter and changes its color properties. The modified polyacrylamide gel method makes it possible to obtain a high efficient near infrared reflection BaFe12O19 nano- pigments with a solar reflectance SR>90%. The high near infrared reflection makes BaFe12O19 nano- pigments have potential applications in the field of heat shielding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-14

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Tian, A. Han, S. Ma, X. Zhu, M. Ye, X. Chen, Preparation of Cr-doped BaTiO3 near infrared reflection pigment powder and its anti-aging performance for acrylonitrile-styrene-acrylate, Powder Technol. 378 (2021) 182-190.

DOI: 10.1016/j.powtec.2020.09.072

Google Scholar

[2] Z. Zhang, R. Wu, Matching performance among visible and near infrared coating, low infrared emitting coating and microwave absorbing coating, J. Wuhan Univ. Technol. 20 (2005) 55-59.

DOI: 10.1007/bf02841283

Google Scholar

[3] J. Geeseman, S. Balters, O. Fox, Z. Kiehl, C. Tenison, Functional near-infrared spectroscopy (FNIRS) in an aerospace environment: challenges and considerations, Aerosp. Med. Hum. Perf. 91 (2020) 833-835.

DOI: 10.3357/amhp.5723.2020

Google Scholar

[4] G.S. Hikku, K. Jeyasubramanian, J. Jacobjose, P. Thiruramanathan, P. Veluswamy, Hiroya Ikedad. Alkyd resin based hydrophilic self-cleaning surface with self-refreshing behaviour as single step durable coating, J, Colloid Interf. Sci. 531 (2018) 628-641.

DOI: 10.1016/j.jcis.2018.07.089

Google Scholar

[5] G. R. T. Suyambulingam, K. Jeyasubramanian, V. K. Mariappan, P. Veluswamy, H. Ikeda, K. Krishnamoorthy, Excellent floating and load bearing properties of superhydrophobic ZnO/copper stearate nanocoating, Chem. Eng. J. 320 (2017) 468-477.

DOI: 10.1016/j.cej.2017.03.052

Google Scholar

[6] Y. Zhang, Z. Yi, X. Wang, P. Chu, W. Yao, Z. Zhou, S. Cheng, Z. Liu, Pinghui Wu, M. Pan, Y. Yi, Dual band visible metamaterial absorbers based on four identical ring patches, Phys. E 127 (2021) 114526.

DOI: 10.1016/j.physe.2020.114526

Google Scholar

[7] Q. Duan, J. Jia, X. Hong, Y. Fu, C. Wang, K. Zhou, X. Liu, H. Yang, Z. Wang, Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation, Sol. Energy 201 (2020) 555–560.

DOI: 10.1016/j.solener.2020.03.037

Google Scholar

[8] L. Jiang, C. Yuan, Z. Li, J. Su, Z. Yi, W. Yao, P. Wu, Z. Liu, S. Cheng, M. Pan, Multi-band and high-sensitivity perfect absorber based on monolayer grapheme metamaterial, Diam. Relat. Mater. 111 (2021) 108227.

DOI: 10.1016/j.diamond.2020.108227

Google Scholar

[9] M. Golkari, H. Shokrollahi, H. Yang, The influence of Eu cations on improving the magnetic properties and promoting the Ce solubility in the Eu, Ce-substituted garnet synthesized by the solid state route, Ceram. Int. 46 (2020) 8553–8560.

DOI: 10.1016/j.ceramint.2019.12.085

Google Scholar

[10] M.R. Khalifeh, H. Shokrollahi, S.M. Arab, H. Yang, The role of Dy incorporation in the magnetic behavior and structural characterization of synthetic Ce, Bi-substituted yttrium iron garnet, Mater. Chem. Phys. 247 (2020) 122838.

DOI: 10.1016/j.matchemphys.2020.122838

Google Scholar

[11] Z. Yi, J. Li, J. Lin, F. Qin, X. Chen, W. Yao, Z. Liu, S. Cheng, P. Wu, H. Li, Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array, Nanoscale 12 (2020) 23077-23083.

DOI: 10.1039/d0nr04502k

Google Scholar

[12] K. Roshanaei, Controlled synthesis and photocatalytic activities of barium hexaferrite nanoparticles and examine decolorization methyl orange on liver of rats, J. Mater. Sci. Mater. El. 28 (2017) 4537-4544.

DOI: 10.1007/s10854-016-6089-6

Google Scholar

[13] M.H. Makled, E. Sheha, An attempt to utilize hard magnetic BaFe12O19 phase as a cathode for magnesium batteries, J. Electron. Mater. 48 (2019) 1612-1616.

DOI: 10.1007/s11664-018-06890-0

Google Scholar

[14] G. Feng, W. Zhou, H. Deng, D. Chen, Y.C. Qing, C.H. Wang, F. Luo, D.M. Zhu, Z.B. Huang, Y.Y. Zhou, Co substituted BaFe12O19 ceramics with enhanced magnetic resonance behavior and microwave absorption properties in 2.6–18 GHz, Ceram. Int. 45 (2019) 13859-13864.

DOI: 10.1016/j.ceramint.2019.04.083

Google Scholar

[15] M.A. Almessiere, Y. Slimani, H. Güngüneş, S. Ali, A. Baykal, I. Ercan, AC susceptibility and hyperfine interactions of Mg-Ca ions co-substituted BaFe12O19 nanohexaferrites, Ceram. Int. 45 (2019) 10048-10055.

DOI: 10.1016/j.ceramint.2019.02.050

Google Scholar

[16] M. Chandel, B.K. Ghosh, D. Moitra, N.N. Ghosh, Barium hexaferrite (BaFe12O19) nanoparticles as highly active and magnetically recoverable catalyst for selective epoxidation of styrene to styrene oxide, J. Nanosci. Nanotechno. 18 (2018) 3478-3483.

DOI: 10.1166/jnn.2018.14625

Google Scholar

[17] D. Lisjak, M. Drofenik, The low-temperature formation of barium hexaferrites, J. Eur. Ceram. Soc. 26 (2006) 3681-3686.

DOI: 10.1016/j.jeurceramsoc.2005.12.014

Google Scholar

[18] B.C. Brightlin, S. Balamurugan, Design and simulation of multi band microstrip antenna for x band and ku band applications using nano barium hexa-ferrite, BaFe12O19, Adv. Sci. Eng. Med. 8 (2016) 521-525.

DOI: 10.1166/asem.2016.1893

Google Scholar

[19] D. Min, Enhanced microwave absorption performance of double-layer absorbers containing BaFe12O19 ferrite and graphite nanosheet composites, J. Electron. Mater. 49 (2020) 819-825.

DOI: 10.1007/s11664-019-07730-5

Google Scholar

[20] SF. Wang, C.F. Zhang, G.A. Sun, B. Chen, W. Liu, X. Xiang, X.T. Zu, Effect of carbon and sintering temperature on the structural and magnetic properties of SrFe12O19 nanoparticles, J. Sol-Gel Sci. Technol. 73 (2015) 371-378.

DOI: 10.1007/s10971-014-3543-x

Google Scholar

[21] S. Goel, A. Garg, R.K. Gupta, A. Dubey, S. Tyagi, Effect of neodymium doping on microwave absorption property of barium hexaferrite in x-band, Mater. Res. Express 7 (2020) 016109.

DOI: 10.1088/2053-1591/ab6544

Google Scholar

[22] S. Mahadevan, P. Sharma, Charge transport mechanism in BaFe12O19 and BaFe11CoO19, J. Magn. Magn. Mater. 514 (2020) 167174.

DOI: 10.1016/j.jmmm.2020.167174

Google Scholar

[23] C. Thirupathy, S. Cathrin Lims, S. John Sundaram, A. H. Mahmoud, K. Kaviyarasu, Equilibrium synthesis and magnetic properties of BaFe12O19 /NiFe2O4 nanocomposite prepared by co precipitation method, J. King Saud Univ. Sci. 32 (2020) 1612-1618.

DOI: 10.1016/j.jksus.2019.12.019

Google Scholar

[24] I. Ismail, I.R. Ibrahim, K.A. Matori, Z. Awang, M. Ertugrul, Comparative study of single- and double-layer BaFe12O19-graphite nanocomposites for electromagnetic wave absorber applications, Mater. Res. Bull. 126 (2020) 110843.

DOI: 10.1016/j.materresbull.2020.110843

Google Scholar

[25] D.W. Alonso-Rodríguez, H. Ruiz-Luna, M.R. Alfaro-Cruz, A. Bauelos-Frias, C. Valero-Luna, Synthesis and characterization of BaFe12O19-WC catalysts prepared by mechanical milling, Fuel 280 (2020) 118608.

DOI: 10.1016/j.fuel.2020.118608

Google Scholar

[26] S.F. Wang, C.F. Zhang, G. Sun, B. Chen, X. Xiang, H. Wang, X.T. Zu, Fabrication of a novel light emission material AlFeO3 by a modified polyacrylamide gel route and characterization of the material, Opt. Mater. 36 (2013) 482-488.

DOI: 10.1016/j.optmat.2013.10.014

Google Scholar

[27] Y. Zhang, C.Y. Zhao, H. Liang, Y. Liu, Macroporous monolithic Pt/γ-Al2O3 and K–Pt/γ-Al2O3 catalysts used for preferential oxidation of CO, Catal. Lett. 127 (2009) 339-347.

DOI: 10.1007/s10562-008-9686-z

Google Scholar

[28] Y. Zhang, H. Liang, C.Y. Zhao, Y. Liu, Macroporous alumina monoliths prepared by filling polymer foams with alumina hydrosols, J. Mater. Sci. 44 (2009) 931-938.

DOI: 10.1007/s10853-008-3189-6

Google Scholar

[29] T. Xian, H. Yang, X. Shen, J.L. Jiang, Z.Q. Wei, W.J. Feng, Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route, J. Alloy. Compd. 480 (2009) 889-892.

DOI: 10.1016/j.jallcom.2009.02.068

Google Scholar

[30] S.Q. Wu, Y.Y. Liu, L.N. He, F.P. Wang, Preparation of β-spodumene-based glass-ceramic powders by polyacrylamide gel process, Mater. Lett. 58 (2004) 2772-2775.

DOI: 10.1016/j.matlet.2004.04.017

Google Scholar

[31] B.C. Brightlin, S. Balamurugan, Magnetic, micro-structural, and optical properties of hexaferrite, BaFe12O19 materials synthesized by salt flux-assisted method. J. Supercond. Nov. Magn. 30 (2017) 215-225.

DOI: 10.1007/s10948-016-3703-z

Google Scholar

[32] D.Z. Bai, H.X. Feng, N.L. Chen, L. Tan, J.H. Qiu, Synthesis, characterization and microwave characteristics of ATP/BaFe12O19/PANI ternary composites, J. Magn. Magn. Mater. 457 (2018) 75-82.

DOI: 10.1016/j.jmmm.2017.12.101

Google Scholar

[33] B.C. Balamurugan, V. Brightlin, S.A. Kiruba, Synthesis of BaFe12O19 materials by mechano-thermal route: novel inorganic pigment with high near-infrared reflectance, J. Nanosci. Nanotechno. 15 (2015) 9494-9499.

DOI: 10.1166/jnn.2015.10335

Google Scholar

[34] Z. Dong, Y. Pu, Z. Gao, P. Wang, X. Liu, Z. Sun, Fabrication, structure and properties of BaTiO3-BaFe12O19 composites with core-shell heterostructure, J. Eur. Ceram. Soc. 35 (2015) 3513-3520.

DOI: 10.1016/j.jeurceramsoc.2015.06.016

Google Scholar

[35] S. Wang, H. Gao, J. Li, Y. Wang, C. Chen, X. Yu, S. Tang, X. Zhao, G. Sun, D. Li, Comparative study of the photoluminescence performance and photocatalytic activity of CeO2/MgAl2O4 composite materials with an n-n heterojunction prepared by one-step synthesis and two-step synthesis methods, J. Phys. Chem. Solid. 150 (2021) 109891.

DOI: 10.1016/j.jpcs.2020.109891

Google Scholar

[36] J. Li, S. Wang, G. Sun, H. Gao, X. Yu, S. Tang, X. Zhao, Z. Yi, Y. Wang, Y. Wei, Facile preparation of MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst and enhanced photocatalytic activity, Mater. Today Chem. 19 (2021) 100390.

DOI: 10.1016/j.mtchem.2020.100390

Google Scholar

[37] S. Tang, S. Wang, X. Yu, H. Gao, X. Niu, Y. Wang, X. Zhao, G. Sun, D. Li, Gamma-ray irradiation assisted polyacrylamide gel synthesis of scheelite type BaWO4 phosphors and its colorimetric, optical and photoluminescence properties, ChemistrySelect 5 (2020) 10599-10606.

DOI: 10.1002/slct.202002429

Google Scholar

[38] A. Bahadur, A. Saeed, S. Iqbal, M. Shoaib, I. Ahmad, M. S. Rahman, M. I. Bashir, M. Yaseen, W. Hussain, Morphological and magnetic properties of BaFe12O19 nanoferrite: a promising microwave absorbing material, Ceram. Int. 43 (2017) 7346-7350.

DOI: 10.1016/j.ceramint.2017.03.039

Google Scholar

[39] S.H. Hosseini, P. Zamani, Preparation of thermal infrared and microwave absorber using SrTiO3/BaFe12O19/polyaniline nanocomposites, J. Magn. Magn. Mater. 397 (2016) 205-212.

DOI: 10.1016/j.jmmm.2015.08.105

Google Scholar

[40] C. Valero-Luna, S.A. Palomares-Sanchéz, F. Ruíz, Catalytic activity of the barium hexaferrite with H2O2/visible lightirradiation for degradation of methylene blue, Catal. Today 266 (2016) 110-119.

DOI: 10.1016/j.cattod.2015.08.049

Google Scholar