[1]
M. Tian, A. Han, S. Ma, X. Zhu, M. Ye, X. Chen, Preparation of Cr-doped BaTiO3 near infrared reflection pigment powder and its anti-aging performance for acrylonitrile-styrene-acrylate, Powder Technol. 378 (2021) 182-190.
DOI: 10.1016/j.powtec.2020.09.072
Google Scholar
[2]
Z. Zhang, R. Wu, Matching performance among visible and near infrared coating, low infrared emitting coating and microwave absorbing coating, J. Wuhan Univ. Technol. 20 (2005) 55-59.
DOI: 10.1007/bf02841283
Google Scholar
[3]
J. Geeseman, S. Balters, O. Fox, Z. Kiehl, C. Tenison, Functional near-infrared spectroscopy (FNIRS) in an aerospace environment: challenges and considerations, Aerosp. Med. Hum. Perf. 91 (2020) 833-835.
DOI: 10.3357/amhp.5723.2020
Google Scholar
[4]
G.S. Hikku, K. Jeyasubramanian, J. Jacobjose, P. Thiruramanathan, P. Veluswamy, Hiroya Ikedad. Alkyd resin based hydrophilic self-cleaning surface with self-refreshing behaviour as single step durable coating, J, Colloid Interf. Sci. 531 (2018) 628-641.
DOI: 10.1016/j.jcis.2018.07.089
Google Scholar
[5]
G. R. T. Suyambulingam, K. Jeyasubramanian, V. K. Mariappan, P. Veluswamy, H. Ikeda, K. Krishnamoorthy, Excellent floating and load bearing properties of superhydrophobic ZnO/copper stearate nanocoating, Chem. Eng. J. 320 (2017) 468-477.
DOI: 10.1016/j.cej.2017.03.052
Google Scholar
[6]
Y. Zhang, Z. Yi, X. Wang, P. Chu, W. Yao, Z. Zhou, S. Cheng, Z. Liu, Pinghui Wu, M. Pan, Y. Yi, Dual band visible metamaterial absorbers based on four identical ring patches, Phys. E 127 (2021) 114526.
DOI: 10.1016/j.physe.2020.114526
Google Scholar
[7]
Q. Duan, J. Jia, X. Hong, Y. Fu, C. Wang, K. Zhou, X. Liu, H. Yang, Z. Wang, Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation, Sol. Energy 201 (2020) 555–560.
DOI: 10.1016/j.solener.2020.03.037
Google Scholar
[8]
L. Jiang, C. Yuan, Z. Li, J. Su, Z. Yi, W. Yao, P. Wu, Z. Liu, S. Cheng, M. Pan, Multi-band and high-sensitivity perfect absorber based on monolayer grapheme metamaterial, Diam. Relat. Mater. 111 (2021) 108227.
DOI: 10.1016/j.diamond.2020.108227
Google Scholar
[9]
M. Golkari, H. Shokrollahi, H. Yang, The influence of Eu cations on improving the magnetic properties and promoting the Ce solubility in the Eu, Ce-substituted garnet synthesized by the solid state route, Ceram. Int. 46 (2020) 8553–8560.
DOI: 10.1016/j.ceramint.2019.12.085
Google Scholar
[10]
M.R. Khalifeh, H. Shokrollahi, S.M. Arab, H. Yang, The role of Dy incorporation in the magnetic behavior and structural characterization of synthetic Ce, Bi-substituted yttrium iron garnet, Mater. Chem. Phys. 247 (2020) 122838.
DOI: 10.1016/j.matchemphys.2020.122838
Google Scholar
[11]
Z. Yi, J. Li, J. Lin, F. Qin, X. Chen, W. Yao, Z. Liu, S. Cheng, P. Wu, H. Li, Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array, Nanoscale 12 (2020) 23077-23083.
DOI: 10.1039/d0nr04502k
Google Scholar
[12]
K. Roshanaei, Controlled synthesis and photocatalytic activities of barium hexaferrite nanoparticles and examine decolorization methyl orange on liver of rats, J. Mater. Sci. Mater. El. 28 (2017) 4537-4544.
DOI: 10.1007/s10854-016-6089-6
Google Scholar
[13]
M.H. Makled, E. Sheha, An attempt to utilize hard magnetic BaFe12O19 phase as a cathode for magnesium batteries, J. Electron. Mater. 48 (2019) 1612-1616.
DOI: 10.1007/s11664-018-06890-0
Google Scholar
[14]
G. Feng, W. Zhou, H. Deng, D. Chen, Y.C. Qing, C.H. Wang, F. Luo, D.M. Zhu, Z.B. Huang, Y.Y. Zhou, Co substituted BaFe12O19 ceramics with enhanced magnetic resonance behavior and microwave absorption properties in 2.6–18 GHz, Ceram. Int. 45 (2019) 13859-13864.
DOI: 10.1016/j.ceramint.2019.04.083
Google Scholar
[15]
M.A. Almessiere, Y. Slimani, H. Güngüneş, S. Ali, A. Baykal, I. Ercan, AC susceptibility and hyperfine interactions of Mg-Ca ions co-substituted BaFe12O19 nanohexaferrites, Ceram. Int. 45 (2019) 10048-10055.
DOI: 10.1016/j.ceramint.2019.02.050
Google Scholar
[16]
M. Chandel, B.K. Ghosh, D. Moitra, N.N. Ghosh, Barium hexaferrite (BaFe12O19) nanoparticles as highly active and magnetically recoverable catalyst for selective epoxidation of styrene to styrene oxide, J. Nanosci. Nanotechno. 18 (2018) 3478-3483.
DOI: 10.1166/jnn.2018.14625
Google Scholar
[17]
D. Lisjak, M. Drofenik, The low-temperature formation of barium hexaferrites, J. Eur. Ceram. Soc. 26 (2006) 3681-3686.
DOI: 10.1016/j.jeurceramsoc.2005.12.014
Google Scholar
[18]
B.C. Brightlin, S. Balamurugan, Design and simulation of multi band microstrip antenna for x band and ku band applications using nano barium hexa-ferrite, BaFe12O19, Adv. Sci. Eng. Med. 8 (2016) 521-525.
DOI: 10.1166/asem.2016.1893
Google Scholar
[19]
D. Min, Enhanced microwave absorption performance of double-layer absorbers containing BaFe12O19 ferrite and graphite nanosheet composites, J. Electron. Mater. 49 (2020) 819-825.
DOI: 10.1007/s11664-019-07730-5
Google Scholar
[20]
SF. Wang, C.F. Zhang, G.A. Sun, B. Chen, W. Liu, X. Xiang, X.T. Zu, Effect of carbon and sintering temperature on the structural and magnetic properties of SrFe12O19 nanoparticles, J. Sol-Gel Sci. Technol. 73 (2015) 371-378.
DOI: 10.1007/s10971-014-3543-x
Google Scholar
[21]
S. Goel, A. Garg, R.K. Gupta, A. Dubey, S. Tyagi, Effect of neodymium doping on microwave absorption property of barium hexaferrite in x-band, Mater. Res. Express 7 (2020) 016109.
DOI: 10.1088/2053-1591/ab6544
Google Scholar
[22]
S. Mahadevan, P. Sharma, Charge transport mechanism in BaFe12O19 and BaFe11CoO19, J. Magn. Magn. Mater. 514 (2020) 167174.
DOI: 10.1016/j.jmmm.2020.167174
Google Scholar
[23]
C. Thirupathy, S. Cathrin Lims, S. John Sundaram, A. H. Mahmoud, K. Kaviyarasu, Equilibrium synthesis and magnetic properties of BaFe12O19 /NiFe2O4 nanocomposite prepared by co precipitation method, J. King Saud Univ. Sci. 32 (2020) 1612-1618.
DOI: 10.1016/j.jksus.2019.12.019
Google Scholar
[24]
I. Ismail, I.R. Ibrahim, K.A. Matori, Z. Awang, M. Ertugrul, Comparative study of single- and double-layer BaFe12O19-graphite nanocomposites for electromagnetic wave absorber applications, Mater. Res. Bull. 126 (2020) 110843.
DOI: 10.1016/j.materresbull.2020.110843
Google Scholar
[25]
D.W. Alonso-Rodríguez, H. Ruiz-Luna, M.R. Alfaro-Cruz, A. Bauelos-Frias, C. Valero-Luna, Synthesis and characterization of BaFe12O19-WC catalysts prepared by mechanical milling, Fuel 280 (2020) 118608.
DOI: 10.1016/j.fuel.2020.118608
Google Scholar
[26]
S.F. Wang, C.F. Zhang, G. Sun, B. Chen, X. Xiang, H. Wang, X.T. Zu, Fabrication of a novel light emission material AlFeO3 by a modified polyacrylamide gel route and characterization of the material, Opt. Mater. 36 (2013) 482-488.
DOI: 10.1016/j.optmat.2013.10.014
Google Scholar
[27]
Y. Zhang, C.Y. Zhao, H. Liang, Y. Liu, Macroporous monolithic Pt/γ-Al2O3 and K–Pt/γ-Al2O3 catalysts used for preferential oxidation of CO, Catal. Lett. 127 (2009) 339-347.
DOI: 10.1007/s10562-008-9686-z
Google Scholar
[28]
Y. Zhang, H. Liang, C.Y. Zhao, Y. Liu, Macroporous alumina monoliths prepared by filling polymer foams with alumina hydrosols, J. Mater. Sci. 44 (2009) 931-938.
DOI: 10.1007/s10853-008-3189-6
Google Scholar
[29]
T. Xian, H. Yang, X. Shen, J.L. Jiang, Z.Q. Wei, W.J. Feng, Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route, J. Alloy. Compd. 480 (2009) 889-892.
DOI: 10.1016/j.jallcom.2009.02.068
Google Scholar
[30]
S.Q. Wu, Y.Y. Liu, L.N. He, F.P. Wang, Preparation of β-spodumene-based glass-ceramic powders by polyacrylamide gel process, Mater. Lett. 58 (2004) 2772-2775.
DOI: 10.1016/j.matlet.2004.04.017
Google Scholar
[31]
B.C. Brightlin, S. Balamurugan, Magnetic, micro-structural, and optical properties of hexaferrite, BaFe12O19 materials synthesized by salt flux-assisted method. J. Supercond. Nov. Magn. 30 (2017) 215-225.
DOI: 10.1007/s10948-016-3703-z
Google Scholar
[32]
D.Z. Bai, H.X. Feng, N.L. Chen, L. Tan, J.H. Qiu, Synthesis, characterization and microwave characteristics of ATP/BaFe12O19/PANI ternary composites, J. Magn. Magn. Mater. 457 (2018) 75-82.
DOI: 10.1016/j.jmmm.2017.12.101
Google Scholar
[33]
B.C. Balamurugan, V. Brightlin, S.A. Kiruba, Synthesis of BaFe12O19 materials by mechano-thermal route: novel inorganic pigment with high near-infrared reflectance, J. Nanosci. Nanotechno. 15 (2015) 9494-9499.
DOI: 10.1166/jnn.2015.10335
Google Scholar
[34]
Z. Dong, Y. Pu, Z. Gao, P. Wang, X. Liu, Z. Sun, Fabrication, structure and properties of BaTiO3-BaFe12O19 composites with core-shell heterostructure, J. Eur. Ceram. Soc. 35 (2015) 3513-3520.
DOI: 10.1016/j.jeurceramsoc.2015.06.016
Google Scholar
[35]
S. Wang, H. Gao, J. Li, Y. Wang, C. Chen, X. Yu, S. Tang, X. Zhao, G. Sun, D. Li, Comparative study of the photoluminescence performance and photocatalytic activity of CeO2/MgAl2O4 composite materials with an n-n heterojunction prepared by one-step synthesis and two-step synthesis methods, J. Phys. Chem. Solid. 150 (2021) 109891.
DOI: 10.1016/j.jpcs.2020.109891
Google Scholar
[36]
J. Li, S. Wang, G. Sun, H. Gao, X. Yu, S. Tang, X. Zhao, Z. Yi, Y. Wang, Y. Wei, Facile preparation of MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst and enhanced photocatalytic activity, Mater. Today Chem. 19 (2021) 100390.
DOI: 10.1016/j.mtchem.2020.100390
Google Scholar
[37]
S. Tang, S. Wang, X. Yu, H. Gao, X. Niu, Y. Wang, X. Zhao, G. Sun, D. Li, Gamma-ray irradiation assisted polyacrylamide gel synthesis of scheelite type BaWO4 phosphors and its colorimetric, optical and photoluminescence properties, ChemistrySelect 5 (2020) 10599-10606.
DOI: 10.1002/slct.202002429
Google Scholar
[38]
A. Bahadur, A. Saeed, S. Iqbal, M. Shoaib, I. Ahmad, M. S. Rahman, M. I. Bashir, M. Yaseen, W. Hussain, Morphological and magnetic properties of BaFe12O19 nanoferrite: a promising microwave absorbing material, Ceram. Int. 43 (2017) 7346-7350.
DOI: 10.1016/j.ceramint.2017.03.039
Google Scholar
[39]
S.H. Hosseini, P. Zamani, Preparation of thermal infrared and microwave absorber using SrTiO3/BaFe12O19/polyaniline nanocomposites, J. Magn. Magn. Mater. 397 (2016) 205-212.
DOI: 10.1016/j.jmmm.2015.08.105
Google Scholar
[40]
C. Valero-Luna, S.A. Palomares-Sanchéz, F. Ruíz, Catalytic activity of the barium hexaferrite with H2O2/visible lightirradiation for degradation of methylene blue, Catal. Today 266 (2016) 110-119.
DOI: 10.1016/j.cattod.2015.08.049
Google Scholar