[1]
F. Gharibnezhad, L. E. Mujica, and J. Rodellar, Comparison of two robust PCA methods for damage detection in presence of outliers, Journal of Physics: Conference Series, vol. 305, no. 1, p.12009, (2011).
DOI: 10.1088/1742-6596/305/1/012009
Google Scholar
[2]
F. Gharibnezhad, L. E. Mujica, J. Rodellar, and C. P. Fritzen, Damage Detection Using Robust Fuzzy Principal Component Analysis, in 6th European Workshop on Structural Health Monitoring (EWSHM), 2012, vol. 54, no. 11.
DOI: 10.4028/www.scientific.net/kem.569-570.916
Google Scholar
[3]
M. Johnson, Waveform based clustering and classification of AE transients in composite laminates using principal component analysis, NDT and E International, vol. 35, no. 6, pp.367-376, (2002).
DOI: 10.1016/s0963-8695(02)00004-x
Google Scholar
[4]
F. Mustapha, G. Manson, S. G. Pierce, and K. Worden, Structural Health Monitoring of an Annular Component using a Statistical Approach, Strain, vol. 41, no. 3, pp.117-127, Aug. (2005).
DOI: 10.1111/j.1475-1305.2005.00207.x
Google Scholar
[5]
L. E. Mujica, J. Rodellar, A. Fernandez, and A. Guemes, Q-statistic and T2-statistic PCA-based measures for damage assessment in structures, Structural Health Monitoring, vol. 10, no. 5, pp.539-553, Nov. (2010).
DOI: 10.1177/1475921710388972
Google Scholar
[1]
L. Cohen, Time-frequency distributions-a review, Proceedings of the IEEE, vol. 77, no. 7, pp.941-981, (1989).
Google Scholar
[7]
S. Mallat, A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1999, p.851.
Google Scholar
[8]
B. A. D. Piombo, A. Fasana, S. Marchesiello, and M. Ruzzene, Modelling and Identification of the Dynamic Response of a Supported Bridge, Mechanical Systems and Signal Processing, vol. 14, pp.75-89, Jan. (2000).
DOI: 10.1006/mssp.1999.1266
Google Scholar
[9]
W. J. Staszewski, Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform, Journal of Sound and Vibration, vol. 214, no. 4, pp.639-658, Jul. (1998).
DOI: 10.1006/jsvi.1998.1616
Google Scholar
[10]
J. H. Suh, S. R. T. Kumara, and S. P. Mysore, Machinery Fault Diagnosis and Prognosis: Application of Advanced Signal Processing Techniques, CIRP Annals - Manufacturing Technology, vol. 48, no. 1, pp.317-320, (1999).
DOI: 10.1016/s0007-8506(07)63192-8
Google Scholar
[11]
H. Sohn, G. Park, J. R. Wait, N. P. Limback, and C. R. Farrar, Wavelet-based active sensing for delamination detection in composite structures, Smart Materials and Structures, vol. 13, no. 1, pp.153-160, Feb. (2004).
DOI: 10.1088/0964-1726/13/1/017
Google Scholar
[12]
T. A. Dawood, M. Sahin, R. A. Shenoi, and T. P. Newson, Real-time damage detection of a composite cantilever beam using wavelet transforms, in First European Workshop on Structural Health Monitoring, (2002).
Google Scholar
[13]
I. T. Jolliffe, Principal component analysis, vol. 2. Wiley Online Library, (2002).
Google Scholar
[14]
J. Shlens, A tutorial on Principal Component Analysis, Citeseer, UCSD, (2005).
Google Scholar
[15]
Z. Su and L. Ye, Identification of Damage Using Lamb Waves: From Fundamentals to Applications, 48th ed. Springer-Verlag Berlin Heidelberg 2009, 2009, p.358.
Google Scholar
[16]
R. A. Carmona, W. L. Hwang, and B. Torresani, Characterization of signals by the ridges of their wavelet transforms, Signal Processing, IEEE Transactions on, vol. 45, no. 10, pp.2586-2590, (1997).
DOI: 10.1109/78.640725
Google Scholar
[17]
R. Carmona, W. L. Hwang, B. Torresani, and Rene Carmona Wen L. Hwang Bruno Torresani, Practical Time-Frequency Analysis: Gabor and Wavelet Transforms, with an Implementation in S. Elsevier Science, 1998, p.490.
Google Scholar
[18]
F. Gharibnezhad, L. E. Mujica, and J. Rodellar, Damage detection using Andrew plots, in proceedings of the 8th International workshop on structural health monitoring, (2011).
Google Scholar
[19]
G. Rote, Computing the minimum Hausdorff distance between two point sets on a line under translation, Information Processing Letters, vol. 38, no. 3, pp.123-127, May (1991).
DOI: 10.1016/0020-0190(91)90233-8
Google Scholar