[1]
S J Bull. Nanoindentation of coatings. Journal of Physics D: Applied Physics, 38(24):R393, (2005).
Google Scholar
[2]
M. R. VanLandingham, J. S. Villarubia, W. F. Guthrie, and G. F. Meyesr. Nanoindentation of polymers: An overview. Macromolecular Symposia, 167(1):15 - 43, (2001).
Google Scholar
[3]
A. Bolshakov and G. M. Pharr. Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. Journal of Materials Research, 13(4):1049- 1058, (1998).
DOI: 10.1557/jmr.1998.0146
Google Scholar
[4]
W. C. Oliver and G. M. Pharr. An improved technique for determining hardness and elasticmodulus using load and displacement sensing indentation experiments. J. Mater. Res., 7:1564 - 1583, (1992).
DOI: 10.1557/jmr.1992.1564
Google Scholar
[5]
W. C. Oliver and G. M. Pharr. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res., 19:3 - 20, (2004).
DOI: 10.1557/jmr.2004.19.1.3
Google Scholar
[6]
Choi Gwang-Mun, Jin Jungho, Shin Dahye, Kim Yun Hyeok, Ko Ji-Hoon, Im Hyeon-Gyun, Jang Junho, Jang Dongchan, and Bae Byeong-Soo. Flexible hard coating: Glass-like wear resistant, yet plastic-like compliant, transparent protective coating for foldable displays. Advanced Materials, 29(19):1700205, (2017).
DOI: 10.1002/adma.201700205
Google Scholar
[7]
A. Charvátová Campbell, P. Klapetek, M. Valtr, and V. Buršíková. Development of reference materials for the investigation of local mechanical properties at the nanoscale. Surface and Interface Analysis, 44(8):1151 - 1154, (2012).
DOI: 10.1002/sia.4850
Google Scholar
[8]
M. R. VanLandingham, T. F. Juliano, and M. J. Hagon. Measuring tip shape for instrumented indentation using atomic force microscopy. Meas. Sci. Technol., 16(2173), (2005).
DOI: 10.1088/0957-0233/16/11/007
Google Scholar
[9]
K. Herrmann, N. M. Jennett, W. Wegener, J. Meneve, K. Hasche, and R. Seemann. Progress in determination of the area function of indenters used for nanoindentation. Thin Solid Films, 377- 378(0):394 - 400, 2000. International Conference on Metallurgic Coatings and Thin Films.
DOI: 10.1016/s0040-6090(00)01367-5
Google Scholar
[10]
K.-D. Bouzakis, M. Pappa, G. Maliaris, and N. Michailidis. Fast determination of parameters describing manufacturing imperfections and operation wear of nanoindenter tips. Surface and Coatings Technology, 215(Supplement C):218 - 223, 2013. Proceedings of the 39th International Conference on Metallurgical Coatings and Thin Films (ICMCTF).
DOI: 10.1016/j.surfcoat.2012.09.061
Google Scholar
[11]
W.J. Zong, D. Wu, and C.L. He. Radius and angle determination of diamond berkovich indenter. Measurement, 104(Supplement C):243 - 252, (2017).
DOI: 10.1016/j.measurement.2017.03.035
Google Scholar
[12]
Jaroslav Čech, Petr Haušild, Ondřej Kovářík, and Aleš Materna. Examination of berkovich indenter tip bluntness. Materials & Design, 109(Supplement C):347 - 353, (2016).
DOI: 10.1016/j.matdes.2016.07.033
Google Scholar
[13]
Barone A.C., Salerno M., Patra N., Gastaldi D., Bertarelli E., Carnelli D., and Vena P. Calibration issues for nanoindentation experiments: Direct atomic force microscopy measurements and indirect methods. Microscopy Research and Technique, 73(10):996-1004.
DOI: 10.1002/jemt.20850
Google Scholar
[14]
J. L. Hay and P. J. Wolff. Small correction required when applying the hertzian contact model to instrumented indentation data. Journal of Materials Research, 16(5):1280-1286, (2001).
DOI: 10.1557/jmr.2001.0179
Google Scholar
[15]
Jack C. Hay, A. Bolshakov, and G. M. Pharr. A critical examination of the fundamental relations used in the analysis of nanoindentation data. Journal of Materials Research, 14(6):2296-2305, (1999).
DOI: 10.1557/jmr.1999.0306
Google Scholar
[16]
T Chudoba and N M Jennett. Higher accuracy analysis of instrumented indentation data obtained with pointed indenters. Journal of Physics D: Applied Physics, 41(21):215407, (2008).
DOI: 10.1088/0022-3727/41/21/215407
Google Scholar