Atomic Force Microscopy Measurements of the Area Function of a Sphero-Conical Tip

Article Preview

Abstract:

With the improvement of depth-sensing instruments nanoindentation has become a standard tool for the study and design of thin film systems, nanocomposites and other nanostructured materials and devices. Mechanical properties, such as elastic modulus and hardness can be measured at scales in the depth range of tens of nanometers. The correct determination of the mechanical properties depends on the proper evaluation of the real contact area. While two standard methods are commonly used, indentations on a reference sample and measurement by atomic force microscopy (AFM), there are many caveats and the issue remains tricky, especially for large depths. In this contribution we present an example where the standard calibration of the tip area function via a reference sample cannot be used for the desired tip and the AFM method must be used instead.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-113

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S J Bull. Nanoindentation of coatings. Journal of Physics D: Applied Physics, 38(24):R393, (2005).

Google Scholar

[2] M. R. VanLandingham, J. S. Villarubia, W. F. Guthrie, and G. F. Meyesr. Nanoindentation of polymers: An overview. Macromolecular Symposia, 167(1):15 - 43, (2001).

Google Scholar

[3] A. Bolshakov and G. M. Pharr. Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. Journal of Materials Research, 13(4):1049- 1058, (1998).

DOI: 10.1557/jmr.1998.0146

Google Scholar

[4] W. C. Oliver and G. M. Pharr. An improved technique for determining hardness and elasticmodulus using load and displacement sensing indentation experiments. J. Mater. Res., 7:1564 - 1583, (1992).

DOI: 10.1557/jmr.1992.1564

Google Scholar

[5] W. C. Oliver and G. M. Pharr. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res., 19:3 - 20, (2004).

DOI: 10.1557/jmr.2004.19.1.3

Google Scholar

[6] Choi Gwang-Mun, Jin Jungho, Shin Dahye, Kim Yun Hyeok, Ko Ji-Hoon, Im Hyeon-Gyun, Jang Junho, Jang Dongchan, and Bae Byeong-Soo. Flexible hard coating: Glass-like wear resistant, yet plastic-like compliant, transparent protective coating for foldable displays. Advanced Materials, 29(19):1700205, (2017).

DOI: 10.1002/adma.201700205

Google Scholar

[7] A. Charvátová Campbell, P. Klapetek, M. Valtr, and V. Buršíková. Development of reference materials for the investigation of local mechanical properties at the nanoscale. Surface and Interface Analysis, 44(8):1151 - 1154, (2012).

DOI: 10.1002/sia.4850

Google Scholar

[8] M. R. VanLandingham, T. F. Juliano, and M. J. Hagon. Measuring tip shape for instrumented indentation using atomic force microscopy. Meas. Sci. Technol., 16(2173), (2005).

DOI: 10.1088/0957-0233/16/11/007

Google Scholar

[9] K. Herrmann, N. M. Jennett, W. Wegener, J. Meneve, K. Hasche, and R. Seemann. Progress in determination of the area function of indenters used for nanoindentation. Thin Solid Films, 377- 378(0):394 - 400, 2000. International Conference on Metallurgic Coatings and Thin Films.

DOI: 10.1016/s0040-6090(00)01367-5

Google Scholar

[10] K.-D. Bouzakis, M. Pappa, G. Maliaris, and N. Michailidis. Fast determination of parameters describing manufacturing imperfections and operation wear of nanoindenter tips. Surface and Coatings Technology, 215(Supplement C):218 - 223, 2013. Proceedings of the 39th International Conference on Metallurgical Coatings and Thin Films (ICMCTF).

DOI: 10.1016/j.surfcoat.2012.09.061

Google Scholar

[11] W.J. Zong, D. Wu, and C.L. He. Radius and angle determination of diamond berkovich indenter. Measurement, 104(Supplement C):243 - 252, (2017).

DOI: 10.1016/j.measurement.2017.03.035

Google Scholar

[12] Jaroslav Čech, Petr Haušild, Ondřej Kovářík, and Aleš Materna. Examination of berkovich indenter tip bluntness. Materials & Design, 109(Supplement C):347 - 353, (2016).

DOI: 10.1016/j.matdes.2016.07.033

Google Scholar

[13] Barone A.C., Salerno M., Patra N., Gastaldi D., Bertarelli E., Carnelli D., and Vena P. Calibration issues for nanoindentation experiments: Direct atomic force microscopy measurements and indirect methods. Microscopy Research and Technique, 73(10):996-1004.

DOI: 10.1002/jemt.20850

Google Scholar

[14] J. L. Hay and P. J. Wolff. Small correction required when applying the hertzian contact model to instrumented indentation data. Journal of Materials Research, 16(5):1280-1286, (2001).

DOI: 10.1557/jmr.2001.0179

Google Scholar

[15] Jack C. Hay, A. Bolshakov, and G. M. Pharr. A critical examination of the fundamental relations used in the analysis of nanoindentation data. Journal of Materials Research, 14(6):2296-2305, (1999).

DOI: 10.1557/jmr.1999.0306

Google Scholar

[16] T Chudoba and N M Jennett. Higher accuracy analysis of instrumented indentation data obtained with pointed indenters. Journal of Physics D: Applied Physics, 41(21):215407, (2008).

DOI: 10.1088/0022-3727/41/21/215407

Google Scholar