Characteristics of Abalone Mussel Shells (Halioitis asinina) with Calcination Temperature Variations as a Basic Material for Synthesis of Carbonated Hydroxyapatite

Article Preview

Abstract:

Carbonated Hydroxyapatite (CHAp) is hydroxyapatite (HAp) substituted with carbonate ions that are similar to natural bone inorganic constituents. CHAp based on abalone mussel shells (Halioitis asinina) with calcination temperature variations were successfully synthesized using the precipitation method. Abalone mussel shells powder was calcined at 650, 800 and 1000°C for 4 hours, that aimed to obtain calcium oxide (CaO) which has the best characteristics as a source of calcium (Ca) in the CHAp synthesis process. The effect of calcination temperature variations on the characteristics of abalone mussel shells powder was investigated and characterized using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and Energy Dispersive X-Ray Spectroscopy (EDX). In this study, calcination temperature variations affected the crystalline phase and the percentage of calcium (Ca) and carbonate (CO32-) ions. The results of the characterization show that the calcination temperature at 1000°C is the optimum temperature to obtain CaO powder as a source of calcium (Ca) in CHAp synthesis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-36

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Nascimento, J.P.M. Issa, R.R. Oliveira, M. M. Iyomasa, S. Siessere, S.C.H. Regalo, Biomaterials Applied to the Bone Healing Proccess, Int. J. Morphol. 25(4) (2007) 839-846.

DOI: 10.4067/s0717-95022007000400025

Google Scholar

[2] A.J. Rahyussalim, S. Ifran, et al. The Needs of Current Implant Technology in Orthopaedic Prosthesis Biomaterials Application to Reduce Prosthesis Failure Rate, J. Nanomater.2016(3) (2016) 1-9.

DOI: 10.1155/2016/5386924

Google Scholar

[3] S. Rujitanapanich, P. Kumpapan. P. Wanjanoi, Synthesis of Hydroxyapatite from Oyster Shell via Precipitation, Energy Procedia,56 (2014) 112-117.

DOI: 10.1016/j.egypro.2014.07.138

Google Scholar

[4] E. Landi, A. Tampieri, G. Celotti, L. Vichi, M. Sandri, Influence of Synthesis and Sintering Parameters on the Characteristics of Carbonate Apatite, Biomater. 25(10) (2004) 1763-1770.

DOI: 10.1016/j.biomaterials.2003.08.026

Google Scholar

[5] R. Z. LeGeros, Calcium Phosphates in Oral Biology and Medicine, Monogr. Oral Sci.15 (1991) Basel: S Karger Pub.

Google Scholar

[6] R. Othman, Z. Mustafa, C. W. Loon,A. F. M. Noor, Effect of Calcium Precusors and pH on The Precipitation of Carbonated Hydroxyapatite, Procedia Chem. 19 (2016) 539-545.

DOI: 10.1016/j.proche.2016.03.050

Google Scholar

[7] M.G. Raucci, V.Guarino, L. Ambrosio, Hybrid Composite Scaffolds Prepared by Sol–Gel Method for Bone Regeneration, Compos. Sci.Technol. 70(13) (2010) 1861-1868.

DOI: 10.1016/j.compscitech.2010.05.030

Google Scholar

[8] J. Barralet, S. Best, W. Bonfield, Carbonate Substitution in Precipitated Hydroxyapatite: An Investigation into the Effects of Reaction Temperature and Bicarbonate Ion Concentration, J. Biomed. Mater. Res.41(1) (1998) 79-86.

DOI: 10.1002/(sici)1097-4636(199807)41:1<79::aid-jbm10>3.0.co;2-c

Google Scholar

[9] N. Jia, L. Shu-Ming, M. Ming-Guo, S. Run-Cang, Z. Jie-Fang, Hydrothermal Synthesis and Characterization of Cellulose-Carbonated Hydroxyapatite Nanocomposites in NaOH-Urea Aqueous Solution, Sci.Adv. Mater. 2(2) (2010) 210-214(5).

DOI: 10.1166/sam.2010.1086

Google Scholar

[10] C. Balazsi, F. Weber, Z. Kover, E. Horvath, C. Nemeth, Preparation of Calcium-Phospate Bioceramics from Natural Resources, J. Eur. Ceram. Soc. 27(2-3) (2007) 1601-1606.

Google Scholar

[11] Y. Rizkayanti, Y. Yusuf, Optimization of the Temperature Synthesis of Hydroxyapatite from Indonesian Crab Shells, Int. J.Nanoelectro.Mater. 12(1) (2019) 85-92.

Google Scholar

[12] T. Lonapakul, Synthesis of Hydroxyapatite from Biogenic Waste, KKU Eng. J.42(3) (2015) 269-275.

Google Scholar

[13] A. Pal, S. Maity, S. Chabri, S. Bera, A. R. Chowdhury, M. Das, A. Sinha, Mechanochemical Synthesis of Nanocrystalline Hydroxyapatite fromMercenaria Clam Shells and Phosphoric Acid, Biomed. Phys. Eng. Express. 3(1) (2017).

DOI: 10.1088/2057-1976/aa54f5

Google Scholar

[14] M. N. Salimi, R. H. Bridson, L. M. Grover,G. A.Leeke, Effect of Processing Conditions on the Formation of Hydroxyapatite Nanoparticles, Powder Technol. 218 (2012) 109-118.

DOI: 10.1016/j.powtec.2011.11.049

Google Scholar

[15] S. Mondal, B. Mondal, A. Dey, S.S. Mukhopadhyay, Studies on processing and Characterization of Hydroxyapatite Biomaterials from Different Bio Wastes, J. Minerals Mater. Charac. Eng. 11(1) (2012) 55-67.

DOI: 10.4236/jmmce.2012.111005

Google Scholar

[16] M. Sari, Y. Yusuf, Synthesis and Characterization of Hydroxyapatite based on Green Mussel Shells (Perna viridis) with Calcination Temperature Variation Using the Precipitation Method, Int. J.Nanoelectro. Mater. 11(3) (2018) 357-370.

DOI: 10.1088/1757-899x/432/1/012046

Google Scholar

[17] S. Ramesh, K.L. Aw, R. Tolouei, M. Amiriyan, C. Y. Tan, M. Hamdi, Sintering Properties of Hydroxyapatite Powders Prepared using Different Methods, Ceram. Int. 39(1)(2013) 111-119.

DOI: 10.1016/j.ceramint.2012.05.103

Google Scholar

[18] A. Solodyankina, A. Nikolaev, O. F. Kamenetskaya, O. Golovanova, Synthesis and Characterization of Nanocrystalline Apatites from Solution Modeling Human Blood, J.Molecular Struct. 1119 (2016) 484-489.

DOI: 10.1016/j.molstruc.2016.04.080

Google Scholar