[1]
J. van der Geer, J.A.J. Hanraads, R.A. Lupton. The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51-59.
Google Scholar
[2]
C.B. Weinberg, E. Bell. A blood vessel model constructed from collagen and cultured vascular cells. Science. 12 (1986) 123-126.
DOI: 10.1126/science.2934816
Google Scholar
[3]
T.M. Pollock. Weight loss with magnesium alloys. Perspectives. 5 (2010) 26-31.
Google Scholar
[4]
S. Razavi, S. Karbasi, M. Morshed, et al. Cell Attachment and Proliferation of Human Adipose-Derived Stem Cells on PLGA/Chitosan Electrospun Nano-Biocomposite. Cell J. 52 (2015) 52-56.
Google Scholar
[5]
Huang J, Li G, Wang W, et al. 3D printing guiding stent graft fenestration: a novel technique for fenestration in endovascular aneurysm repair. Vascular. 23 (2017) 46-49.
DOI: 10.1177/1708538116682913
Google Scholar
[6]
K.K. Sankaran, U.M. Krishnan, S. Sethuraman. Axially aligned 3D nanofibrous grafts of PLA-PCL for small diameter cardiovascular applications. Journal of Biomaterials Science, Polymer Edition. 16 (2014) 198-203.
DOI: 10.1080/09205063.2014.950505
Google Scholar
[7]
Y. Yao, J. Wang, Y. Cui, R. Xu, et al. Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomaterialia. 35 (2014) 235-236.
DOI: 10.1016/j.actbio.2014.02.042
Google Scholar
[8]
F. Du, H. Wang, W. Zhao, D. Li, et al. Gradient nanofibrous chitosan/poly?-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials. 3 (2011) 98-102.
DOI: 10.1016/j.biomaterials.2011.10.037
Google Scholar
[9]
M. Peuster, P. Wohlsein, M. Brügmann, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits. Heart. 9 (2001) 78-89.
DOI: 10.1136/heart.86.5.563
Google Scholar
[10]
A. Yin, K. Zhang, M. Mcclure, et al. Electrospinning collagen/chitosan/poly (L-lactic acid-co-ε-caprolactone) to form a vascular graft: mechanical and biological characterization. Journal of Biomedical Materials Research. 11(2013) 56-59.
DOI: 10.1002/jbm.a.34434
Google Scholar
[11]
D. Coakley, F. Shaikh, K. Sullivan, et al. Comparing the endothelialisation of extracellular matrix bioscaffolds with coated synthetic vascular graft materials. International Journal of Surgical Investigation. 21 (2016) 269-274.
DOI: 10.1016/j.ijsu.2015.11.008
Google Scholar
[12]
C.K. Koskinas, Yiannis S. Chatzizisis, P.A. Antoniadis, G.D. Giannoglou. Role of Endothelial Shear Stress in Stent Restenosis and Thrombosis. Journal of the American College of Cardiology. 15 (2012) 159-163.
DOI: 10.1016/j.jacc.2011.10.903
Google Scholar
[13]
B. Cortese, A. Bertoletti, S. De Matteis, G.B. Danzi, A. Kastrati. Drug-eluting stents perform better than bare metal stents in small coronary vessels: A meta-analysis of randomised and observational clinical studies with mid-term follow up. International Journal of Cardiology. 2 (2011) 15-19.
DOI: 10.1016/j.ijcard.2011.04.016
Google Scholar
[14]
T. Palmerini, G. Biondi-Zoccai, D.D. Riva, C. Stettler, et al. Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. The Lancet. 24 (2012) 598-601.
DOI: 10.1016/s0140-6736(12)60324-9
Google Scholar
[15]
S. Nishio, K. Kosuga, K. Igaki, et al. Circulation. Long-Term (>10 Years) Clinical Outcomes of First-in-Human Biodegradable Poly-l-Lactic Acid Coronary Stents: Igaki-Tamai Stents. 19 (2012) 402-409.
DOI: 10.1161/circulationaha.110.000901
Google Scholar
[16]
H. Samady, P. Eshtehardi, M.C. McDaniel, J. Suo, et al. Coronary Artery Wall Shear Stress Is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease. Circulation. 6 (2011) 289-296.
DOI: 10.1161/circulationaha.111.021824
Google Scholar
[17]
Y. Onuma, P.W. Serruys. Bioresorbable Scaffold: The Advent of a New Era in Percutaneous Coronary and Peripheral Revascularization?. Circulation. 7 (2011) 269-302.
DOI: 10.1161/circulationaha.110.971606
Google Scholar
[18]
Junlei Li, Feng Zheng, Xun Qiu, Peng Wan, Lili Tan, Ke Yang. Finite element analyses for optimization design of biodegradable magnesium alloy stent. Materials Science & Engineering C. 4 (2014) 346-351.
DOI: 10.1016/j.msec.2014.05.078
Google Scholar
[19]
M. Azaouzi, A. Makradi, S. Belouettar. Numerical investigations of the structural behavior of a balloon expandable stent design using finite element method. Computational Materials Science. 13 (2013) 765-772.
DOI: 10.1016/j.commatsci.2013.01.031
Google Scholar
[20]
Michael Haude, Hüseyin Ince, Alexandre Abizaid, Ralph Toelg, Pedro Alves Lemos, Clemens von Birgelen, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. The Lancet. 1001(2016) 1005-1009.
DOI: 10.1016/s0140-6736(15)00447-x
Google Scholar
[21]
Xiwei Liu, Jianke Sun, Yinghong Yang, Feiyu Zhou, Zhongjie Pu, Li Li, Yufeng Zheng. Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn–Mg–Sr alloys as biodegradable metals. Materials Letters. 6 (2016) 505-508.
DOI: 10.1016/j.matlet.2015.07.151
Google Scholar
[22]
Sriram Tammareddi, Guangyong Sun, Qing Li. Multiobjective robust optimization of coronary stents. Materials & Design. 1(2016) 153-159.
DOI: 10.1016/j.matdes.2015.10.153
Google Scholar
[23]
W. Wu, L. Petrini, D. Gastaldi, T. Villa, M. Vedani, E. Lesma, B. Previtali, F. Migliavacca. Finite Element Shape Optimization for Biodegradable Magnesium Alloy Stents. Annals of Biomedical Engineering. 9 (2010) 876-882.
DOI: 10.1007/s10439-010-0057-8
Google Scholar
[24]
Wenjiao Lin, Li Qin, Haiping Qi, Deyuan Zhang, Gui Zhang, Runlin Gao, Hong Qiu, Ying Xia, Ping Cao, Xiang Wang, Wei Zheng. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold. Acta Biomaterialia. 27 (2017) 2716-2719.
DOI: 10.1016/j.actbio.2017.03.020
Google Scholar
[25]
J. Kubásek, D. Vojtěch, E. Jablonská, T. Ruml. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys[J] . Materials Science & Engineering C. 8(2016) 755-759.
DOI: 10.1016/j.msec.2015.08.015
Google Scholar
[26]
Pei-Jiang Wang, Nicola Ferralis, Claire Conway, Jeffrey C. Grossman,Elazer R. Edelman. Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. Proceedings of the National Academy of Sciences. 11 (2018) 987-991.
DOI: 10.1073/pnas.1716420115
Google Scholar
[27]
Alexandre Abizaid, Didier Carrié, Norbert Frey, Matthias Lutz, Joachim Weber-Albers, Darius Dudek, Bernard Chevalier, Shu-Chuan Weng, Ricardo A. Costa, Jeffrey Anderson, Gregg W. Stone. Six-Month Clinical and Angiographic Outcomes of a Novel Radiopaque Sirolimus-Eluting Bioresorbable Vascular Scaffold: The FANTOM II Study. JACC: Cardiovascular Interventions. 7 (2017) 75-79.
DOI: 10.1016/j.jcin.2017.07.033
Google Scholar