[1]
R. Martınez-Manez, J. Soto, E. Garc-Breijo, L. Gil, J. Ibnez, E Gadea, A multisensor in thick-film technology for water quality control, Sens. Actuators, A 120 (2005) 589-595.
DOI: 10.1016/j.sna.2005.03.006
Google Scholar
[2]
S. Zhuiykov, Solid-state sensors monitoring parameters of water quality for the next generation of wireless sensor networks, Sens. Actuators, B 161 (2012) 1- 20.
DOI: 10.1016/j.snb.2011.10.078
Google Scholar
[3]
S. Zhuiykov, D. O'Brien, M. Best, Water quality assessment by an integrated multi-sensor based on semiconductor RuO2 nanostructures, Meas. Sci. Technol. 20 (2009) 095201.
DOI: 10.1088/0957-0233/20/9/095201
Google Scholar
[4]
S. Zhuiykov, Development of ceramic electrochemical sensor based on Bi2Ru2O7+x _ RuO2 sub-micron oxide sensing electrode for water quality monitoring, Ceram. Int. 36 (2010) 2407-2413.
DOI: 10.1016/j.ceramint.2010.07.013
Google Scholar
[5]
J.K. Atkinson, A.W.J. Cranny, W.V. Glasspool, J.A. Mihell, An investigation of the performance characteristics and operational lifetimes of multi-element thick film sensor arrays used in the determination of water quality parameters, Sens. Actuators, B 54 (1999) 215-231.
DOI: 10.1016/s0925-4005(99)00023-4
Google Scholar
[6]
V. M. Stippl, A. Delgado, T. M. Becker, Development of a method for the optical in-situ determination of pH value during high-pressure treatment of fluid food, Innov. Food. Sci. Emerg. 5 (2004) 285-292.
DOI: 10.1016/j.ifset.2004.05.002
Google Scholar
[7]
E. Kress-Rogers, Solid-state pH sensors for food applications, Trends Food Sci. & Tech. 2 (1991) 320-324.
DOI: 10.1016/0924-2244(91)90735-2
Google Scholar
[8]
P. Kahrilas, Gastroesophageal reflux disease, New Engl. J. Med.359 (2008) 1700-1707.
DOI: 10.1056/nejmcp0804684
Google Scholar
[9]
J. C. Chou, D.G. Wu, S. C. Tseng, C.C. Chen, G.C. Ye, Application of microfluidic device for lactic biosensor, IEEE Sens. J. 13 (2013) 1363-1370.
DOI: 10.1109/jsen.2012.2234552
Google Scholar
[10]
P. Kurzweil, Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook, Sensors 9 (2009) 4955-4985.
DOI: 10.3390/s90604955
Google Scholar
[11]
W. Vonau , U. Guth, pH Monitoring: a review, J. Solid State Electrochem. 10 (2006) 746-752.
DOI: 10.1007/s10008-006-0120-4
Google Scholar
[12]
G. Eisenmann, Glass electrodes for hydrogen and other cations, Marcel Dekker, New York, 1967.
Google Scholar
[13]
B. E. Horton, S. Schweitzer, A. J. De Rouin, and K. Ghee Ong, A Varactor-Based, Inductively Coupled Wireless pH Sensor, IEEE Sens. J. 11 (2011), 1061-1066.
DOI: 10.1109/jsen.2010.2062503
Google Scholar
[14]
S. Bhadra, D.S.Y. Tan, D.J. Thomson, M.S. Freund, Wireless Passive Sensor for Temperature Compensated Remote pH Monitoring, IEEE Sens. J. 13 (2013) 2428-2436.
DOI: 10.1109/jsen.2013.2255519
Google Scholar
[15]
A. Fog, R. P. Buck, Electronic Semiconducting Oxides as pH sensors, Sens. Actuators 5 (1984) 137-146.
DOI: 10.1016/0250-6874(84)80004-9
Google Scholar
[16]
S. Głab, A. Hulanicki, G. Edwall, F. Ingman, Metal-Metal oxide and metal oxide electrodes as pH sensors, CRC Crit. Rev. Anal. Chem. 21 (1989) 29-47.
DOI: 10.1080/10408348908048815
Google Scholar
[17]
M. Yuqinga, G. Jianguo, C. Jianrong, Ion sensitive field effect transducer-based biosensors, Biotechnol. Adv. 21 (2003) 527-534.
DOI: 10.1016/s0734-9750(03)00103-4
Google Scholar
[18]
M. Wang, S. Yao, M. Madou, A long term stable iridium oxide pH electrode, Sen. Actuators, B 81 (2002) 313-315.
DOI: 10.1016/s0925-4005(01)00972-8
Google Scholar
[19]
K. Paztorby A. Sekiguchi, N. Shimo, N. Kitamura, H. Masuharaay, Iridium oxide-based microelectrochemical transistors for pH sensing, Sens. Actuators, B 12 (1993) 225-230.
DOI: 10.1016/0925-4005(93)80023-5
Google Scholar
[20]
S. Kakooei, M. C. Ismail, B. A. Wahjoedi, An overview of pH Sensors Based on Iridium Oxide: Fabrication and Application, International Journal of Material Science Innovations (IJMSI) 1 (2013) 62-72.
Google Scholar
[21]
Y.L. Chin, J.C. Chou, T.P. Sun, W.Y. Chung, S.K. Hsiung, A novel pH sensitive ISFET with on chip temperature sensing using CMOS standard process, Sens. Actuators, B 76 (2001) 582-593.
DOI: 10.1016/s0925-4005(01)00639-6
Google Scholar
[22]
C.W. Pan, J.C. Chou, T. P. Sun, S.K. Hsiung, Development of the real-time pH sensing system for array sensors, Sens. Actuators, B 108 (2005) 870-876.
DOI: 10.1016/j.snb.2004.11.087
Google Scholar
[23]
W.D. Zhang, B. Xu, A solid-state pH sensor based on WO3-modified vertically aligned multiwalled carbon nanotubes, Electrochem. Commun. 11 (2009) 1038-1041.
DOI: 10.1016/j.elecom.2009.03.006
Google Scholar
[24]
M.J. Natan, T.E. Mallouk, M.S. Wighton, pH-Sensitive WO3-Based Microelectrochemical Transistors, J. Phys. Chem. 91 (1987) 648-654.
DOI: 10.1021/j100287a030
Google Scholar
[25]
R. Koncki, M. Mascini, Screen-printed ruthenium dioxide electrodes for pH measurements, Anal. Chim. Acta. 351 (1997) 143-149.
DOI: 10.1016/s0003-2670(97)00367-x
Google Scholar
[26]
S. Zhuiykov, Morphology and sensing characteristics of nanostructured RuO2 electrodes for integrated water quality monitoring sensors, Electrochem. Commun. 10 (2008) 839-843.
DOI: 10.1016/j.elecom.2008.03.007
Google Scholar
[27]
H. N. McMurray, P. Douglas, D. Abbot, Novel thick film pH sensor based on Ruthenium dioxide glass composites, Sens. Actuators, B 28 (1995) 9-15.
DOI: 10.1016/0925-4005(94)01536-q
Google Scholar
[28]
J.A. Mihell, J.K. Atkinson, Planar thick-film pH electrodes based on ruthenium dioxide Hydrate, Sens. Actuators, B 48 (1998) 505-511.
DOI: 10.1016/s0925-4005(98)00090-2
Google Scholar
[29]
Y.H. Liao, J.C. Chou, Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system, Sens. Actuators, B 128 (2008) 603-612.
DOI: 10.1016/j.snb.2007.07.023
Google Scholar