A Low-Cost pH Sensor Based on RuO2 Resistor Material

Article Preview

Abstract:

Fresh water deficiency caused by climate change calls for employing novel measures to ensure safety of drinking water supply. Wireless sensor networks can be used for monitoring hydrological conditions across wide area, allowing flow forecasting and early detection of pollutants. While there are no fundamental technological obstacles to implementation of large area sensor networks, their feasibility is constrained by unit cost of sensing nodes. This paper describes a low-cost pH sensor, intended for use in fresh water monitoring. The sensor was fabricated in a standard thick film process, and an off-the-shelf resistive paste was used as a sensing material. For the fabrication of sensor, RuO2 resistive paste was screen printed on the alumina substrate with silver conducting layer. Test solutions with pH ranging from 2 to 10 were prepared from HCl or KOH solutions. The potential difference between reference and sensing electrode (electromotive force emf of an electrochemical cell) should be proportional to the pH of a solution according to the Nernst equation. The fabricated sensor exhibits Nernstian response to pH. Influence of storage conditions on sensing performance was also investigated.

You have full access to the following eBook

Info:

Periodical:

Nano Hybrids (Volume 5)

Pages:

1-15

Citation:

Online since:

October 2013

Export:

Share:

Citation:

[1] R. Martınez-Manez, J. Soto, E. Garc-Breijo, L. Gil, J. Ibnez, E Gadea, A multisensor in thick-film technology for water quality control, Sens. Actuators, A 120 (2005) 589-595.

DOI: 10.1016/j.sna.2005.03.006

Google Scholar

[2] S. Zhuiykov, Solid-state sensors monitoring parameters of water quality for the next generation of wireless sensor networks, Sens. Actuators, B 161 (2012) 1- 20.

DOI: 10.1016/j.snb.2011.10.078

Google Scholar

[3] S. Zhuiykov, D. O'Brien, M. Best, Water quality assessment by an integrated multi-sensor based on semiconductor RuO2 nanostructures, Meas. Sci. Technol. 20 (2009) 095201.

DOI: 10.1088/0957-0233/20/9/095201

Google Scholar

[4] S. Zhuiykov, Development of ceramic electrochemical sensor based on Bi2Ru2O7+x _ RuO2 sub-micron oxide sensing electrode for water quality monitoring, Ceram. Int. 36 (2010) 2407-2413.

DOI: 10.1016/j.ceramint.2010.07.013

Google Scholar

[5] J.K. Atkinson, A.W.J. Cranny, W.V. Glasspool, J.A. Mihell, An investigation of the performance characteristics and operational lifetimes of multi-element thick film sensor arrays used in the determination of water quality parameters, Sens. Actuators, B 54 (1999) 215-231.

DOI: 10.1016/s0925-4005(99)00023-4

Google Scholar

[6] V. M. Stippl, A. Delgado, T. M. Becker, Development of a method for the optical in-situ determination of pH value during high-pressure treatment of fluid food, Innov. Food. Sci. Emerg. 5 (2004) 285-292.

DOI: 10.1016/j.ifset.2004.05.002

Google Scholar

[7] E. Kress-Rogers, Solid-state pH sensors for food applications, Trends Food Sci. & Tech. 2 (1991) 320-324.

DOI: 10.1016/0924-2244(91)90735-2

Google Scholar

[8] P. Kahrilas, Gastroesophageal reflux disease, New Engl. J. Med.359 (2008) 1700-1707.

DOI: 10.1056/nejmcp0804684

Google Scholar

[9] J. C. Chou, D.G. Wu, S. C. Tseng, C.C. Chen, G.C. Ye, Application of microfluidic device for lactic biosensor, IEEE Sens. J. 13 (2013) 1363-1370.

DOI: 10.1109/jsen.2012.2234552

Google Scholar

[10] P. Kurzweil, Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook, Sensors 9 (2009) 4955-4985.

DOI: 10.3390/s90604955

Google Scholar

[11] W. Vonau , U. Guth, pH Monitoring: a review, J. Solid State Electrochem. 10 (2006) 746-752.

DOI: 10.1007/s10008-006-0120-4

Google Scholar

[12] G. Eisenmann, Glass electrodes for hydrogen and other cations, Marcel Dekker, New York, 1967.

Google Scholar

[13] B. E. Horton, S. Schweitzer, A. J. De Rouin, and K. Ghee Ong, A Varactor-Based, Inductively Coupled Wireless pH Sensor, IEEE Sens. J. 11 (2011), 1061-1066.

DOI: 10.1109/jsen.2010.2062503

Google Scholar

[14] S. Bhadra, D.S.Y. Tan, D.J. Thomson, M.S. Freund, Wireless Passive Sensor for Temperature Compensated Remote pH Monitoring, IEEE Sens. J. 13 (2013) 2428-2436.

DOI: 10.1109/jsen.2013.2255519

Google Scholar

[15] A. Fog, R. P. Buck, Electronic Semiconducting Oxides as pH sensors, Sens. Actuators 5 (1984) 137-146.

DOI: 10.1016/0250-6874(84)80004-9

Google Scholar

[16] S. Głab, A. Hulanicki, G. Edwall, F. Ingman, Metal-Metal oxide and metal oxide electrodes as pH sensors, CRC Crit. Rev. Anal. Chem. 21 (1989) 29-47.

DOI: 10.1080/10408348908048815

Google Scholar

[17] M. Yuqinga, G. Jianguo, C. Jianrong, Ion sensitive field effect transducer-based biosensors, Biotechnol. Adv. 21 (2003) 527-534.

DOI: 10.1016/s0734-9750(03)00103-4

Google Scholar

[18] M. Wang, S. Yao, M. Madou, A long term stable iridium oxide pH electrode, Sen. Actuators, B 81 (2002) 313-315.

DOI: 10.1016/s0925-4005(01)00972-8

Google Scholar

[19] K. Paztorby A. Sekiguchi, N. Shimo, N. Kitamura, H. Masuharaay, Iridium oxide-based microelectrochemical transistors for pH sensing, Sens. Actuators, B 12 (1993) 225-230.

DOI: 10.1016/0925-4005(93)80023-5

Google Scholar

[20] S. Kakooei, M. C. Ismail, B. A. Wahjoedi, An overview of pH Sensors Based on Iridium Oxide: Fabrication and Application, International Journal of Material Science Innovations (IJMSI) 1 (2013) 62-72.

Google Scholar

[21] Y.L. Chin, J.C. Chou, T.P. Sun, W.Y. Chung, S.K. Hsiung, A novel pH sensitive ISFET with on chip temperature sensing using CMOS standard process, Sens. Actuators, B 76 (2001) 582-593.

DOI: 10.1016/s0925-4005(01)00639-6

Google Scholar

[22] C.W. Pan, J.C. Chou, T. P. Sun, S.K. Hsiung, Development of the real-time pH sensing system for array sensors, Sens. Actuators, B 108 (2005) 870-876.

DOI: 10.1016/j.snb.2004.11.087

Google Scholar

[23] W.D. Zhang, B. Xu, A solid-state pH sensor based on WO3-modified vertically aligned multiwalled carbon nanotubes, Electrochem. Commun. 11 (2009) 1038-1041.

DOI: 10.1016/j.elecom.2009.03.006

Google Scholar

[24] M.J. Natan, T.E. Mallouk, M.S. Wighton, pH-Sensitive WO3-Based Microelectrochemical Transistors, J. Phys. Chem. 91 (1987) 648-654.

DOI: 10.1021/j100287a030

Google Scholar

[25] R. Koncki, M. Mascini, Screen-printed ruthenium dioxide electrodes for pH measurements, Anal. Chim. Acta. 351 (1997) 143-149.

DOI: 10.1016/s0003-2670(97)00367-x

Google Scholar

[26] S. Zhuiykov, Morphology and sensing characteristics of nanostructured RuO2 electrodes for integrated water quality monitoring sensors, Electrochem. Commun. 10 (2008) 839-843.

DOI: 10.1016/j.elecom.2008.03.007

Google Scholar

[27] H. N. McMurray, P. Douglas, D. Abbot, Novel thick film pH sensor based on Ruthenium dioxide glass composites, Sens. Actuators, B 28 (1995) 9-15.

DOI: 10.1016/0925-4005(94)01536-q

Google Scholar

[28] J.A. Mihell, J.K. Atkinson, Planar thick-film pH electrodes based on ruthenium dioxide Hydrate, Sens. Actuators, B 48 (1998) 505-511.

DOI: 10.1016/s0925-4005(98)00090-2

Google Scholar

[29] Y.H. Liao, J.C. Chou, Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system, Sens. Actuators, B 128 (2008) 603-612.

DOI: 10.1016/j.snb.2007.07.023

Google Scholar