Computed Torque Control of a Caterpillar Robot Manipulator Using Neural Network

Article Preview

Abstract:

This paper presents a neural computed torque controller, which employs to a Caterpillar robot manipulator. A description to exert a control method application neural network for nonlinear PD computed torque controller to a two sub-mechanisms Caterpillar robot manipulator. A nonlinear PD computed torque controller is obtained via utilizing a popular computed torque controller and using neural networks. The proposed controller has some advantages such as low control effort, high trajectory tracking and learning ability. The joint angles of two sub-mechanisms have been obtained by using the numerical simulations. The discovered figures show that the performance of the neural computed torque controller is better than a conventional computed torque controller in trajectory tracking and reduction of setting time. Finally, snapshots of gain sequences are demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-118

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Juhász, Z., & Zelei, A. (2013). Analysis of worm-like locomotion. Mechanical Engineering, 57(2), 59-64.

DOI: 10.3311/ppme.7047

Google Scholar

[2] Yamashita, A., Matsui, K., Kawanishi, R., Kaneko, T., Murakami, T., Omori, H., .. & Asama, H. (2011, December). Self-localization and 3-D model construction of pipe by earthworm robot equipped with omni-directional rangefinder. In Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on (pp.1017-1023.

DOI: 10.1109/robio.2011.6181421

Google Scholar

[3] Wang, Y. K., Song, C. N., Wang, Z. L., Guo, C., & Tan, Q. Y. (2011). A SMA Actuated Earthworm-Like Robot. In Intelligent Computing and Information Science (pp.619-624). Springer Berlin Heidelberg.

DOI: 10.1007/978-3-642-18134-4_98

Google Scholar

[4] Bodnicki, M., & Kamiński, D. (2014). In-pipe Microrobot Driven by SMA Elements. In Mechatronics 2013 (pp.527-533). Springer International Publishing.

DOI: 10.1007/978-3-319-02294-9_67

Google Scholar

[5] Zhou, M., Tao, Y., Cheng, L., Liu, W. T., & Fu, X. (2013). A Biomimetic Earthworm-Like Micro Robot Using Nut-Type Piezoelectric Motor. In Intelligent Robotics and Applications (pp.129-135). Springer Berlin Heidelberg.

DOI: 10.1007/978-3-642-40852-6_15

Google Scholar

[6] Zarrouk, D., Sharf, I., & Shoham, M. (2010, May). Analysis of earthworm-like robotic locomotion on compliant surfaces. In Robotics and Automation (ICRA)s, 2010 IEEE International Conference on (pp.1574-1579). IEEE.

DOI: 10.1109/robot.2010.5509846

Google Scholar

[7] Zarrouk, D., Sharf, I., & Shoham, M. (2011). Analysis of wormlike robotic locomotion on compliant surfaces. IEEE Transactions on Biomedical Engineering, 58(2), 301-309.

DOI: 10.1109/tbme.2010.2066274

Google Scholar

[8] Zarrouk, D., Sharf, I., & Shoham, M. (2012, May). Experimental validation of locomotion efficiency of worm-like robots and contact compliance. In Robotics and Automation (ICRA), 2012 IEEE International Conference on (pp.5080-5085). IEEE.

DOI: 10.1109/icra.2012.6224782

Google Scholar

[9] Zarrouk, D., & Shoham, M. (2013, May). Energy requirements of inchworm crawling on a flexible surface and comparison to earthworm crawling. In Robotics and Automation (ICRA), 2013 IEEE International Conference on (pp.3342-3347). IEEE.

DOI: 10.1109/icra.2013.6631043

Google Scholar

[10] Ghanbari, A., Rostami, A., Noorani, S. M. R. S., & Fakhrabadi, M. M. S. (2008). Modeling and simulation of inchworm mode locomotion. In Intelligent Robotics and Applications (pp.617-624). Springer Berlin Heidelberg.

DOI: 10.1007/978-3-540-88513-9_66

Google Scholar

[11] Ghanbari, A., & Noorani, S. M. R. S. (2011). Optimal trajectory planning for design of a crawling gait in a robot using genetic algorithm. International Journal of Advanced Robotic Systems, 8(1), 29-36.

DOI: 10.5772/10526

Google Scholar

[12] Kim, S., Hawkes, E., Cho, K., Joldaz, M., Foleyz, J., & Wood, R. (2009, October). Micro artificial muscle fiber using NiTi spring for soft robotics. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on (pp.2228-2234.

DOI: 10.1109/iros.2009.5354178

Google Scholar

[13] Seok, S., Onal, C. D., Cho, K. J., Wood, R. J., Rus, D., & Kim, S. (2013). Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. Mechatronics, IEEE/ASME Transactions on, 18(5), 1485-1497.

DOI: 10.1109/tmech.2012.2204070

Google Scholar

[14] Onal, C. D., Wood, R. J., & Rus, D. (2011, May). Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms. In Robotics and Automation (ICRA), 2011 IEEE International Conference on (pp.4608-4613). IEEE.

DOI: 10.1109/icra.2011.5980139

Google Scholar

[15] Onal, C. D., Wood, R. J., & Rus, D. (2013). An origami-inspired approach to worm robots. Mechatronics, IEEE/ASME Transactions on, 18(2), 430-438.

DOI: 10.1109/tmech.2012.2210239

Google Scholar

[16] Ouyang, P. R., Zhang, W. J., & Wu, F. X. (2002).

Google Scholar

[17] Ghorbel, F. H., Chételat, O., Gunawardana, R., & Longchamp, R. (2000). Modeling and set point control of closed-chain mechanisms: theory and experiment. Control Systems Technology, IEEE Transactions on, 8(5), 801-815.

DOI: 10.1109/87.865853

Google Scholar

[18] Wu, F. X., Zhang, W. J., Li, Q., & Ouyang, P. R. (2002). Integrated design and PD control of high-speed closed-loop mechanisms. Journal of dynamic systems, measurement, and control, 124(4), 522-528.

DOI: 10.1115/1.1513179

Google Scholar

[19] Cheng, H., Yiu, Y. K., & Li, Z. (2003). Dynamics and control of redundantly actuated parallel manipulators. Mechatronics, IEEE/ASME Transactions on, 8(4), 483-491.

DOI: 10.1109/tmech.2003.820006

Google Scholar

[20] Codourey, A. (1998). Dynamic modeling of parallel robots for computed-torque control implementation. The International Journal of Robotics Research, 17(12), 1325-1336.

DOI: 10.1177/027836499801701205

Google Scholar

[21] Davliakos, I., & Papadopoulos, E. (2008). Model-based control of a 6-dof electrohydraulic Stewart–Gough platform. Mechanism and machine theory, 43(11), 1385-1400.

DOI: 10.1016/j.mechmachtheory.2007.12.002

Google Scholar

[22] Paccot, F., Lemoine, P., Andreff, N., Chablat, D., & Martinet, P. (2008, May). A vision-based computed torque control for parallel kinematic machines. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on (pp.1556-1561.

DOI: 10.1109/robot.2008.4543423

Google Scholar

[23] Li, Q., & Wu, F. X. (2004). Control performance improvement of a parallel robot via the design for control approach. Mechatronics, 14(8), 947-964.

DOI: 10.1016/j.mechatronics.2004.04.002

Google Scholar

[24] Shang, W., & Cong, S. (2009). Nonlinear computed torque control for a high-speed planar parallel manipulator. Mechatronics, 19(6), 987-992.

DOI: 10.1016/j.mechatronics.2009.04.002

Google Scholar

[25] Yang, Z., Wu, J., & Mei, J. (2007). Motor-mechanism dynamic model based neural network optimized computed torque control of a high speed parallel manipulator. Mechatronics, 17(7), 381-390.

DOI: 10.1016/j.mechatronics.2007.04.009

Google Scholar

[26] Yu, H. (2006). Modeling and control of hybrid machine systems—a five-bar mechanism case. International journal of automation and computing, 3(3), 235-243.

DOI: 10.1007/s11633-006-0235-1

Google Scholar

[27] Yiu, Y. K., & Li, Z. X. (2003, July). PID and adaptive robust control of a 2-dof over-actuated parallel manipulator for tracking different trajectory. In Computational Intelligence in Robotics and Automation, 2003. Proceedings. 2003 IEEE International Symposium on (Vol. 3, pp.1052-1057.

DOI: 10.1109/cira.2003.1222142

Google Scholar

[28] Huang, D. S. (1998). The local minima-free condition of feedforward neural networks for outer-supervised learning. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 28(3), 477-480.

DOI: 10.1109/3477.678658

Google Scholar

[29] Huang, D. S. (1997). The united adaptive learning algorithm for the link weights and shape parameter in RBFN for pattern recognition. International journal of pattern recognition and artificial intelligence, 11(06), 873-888.

DOI: 10.1142/s0218001497000391

Google Scholar

[30] Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally-tuned processing units. Neural computation, 1(2), 281-294.

DOI: 10.1162/neco.1989.1.2.281

Google Scholar

[31] Zhang, D., & Lei, J. (2011). Kinematic analysis of a novel 3-DOF actuation redundant parallel manipulator using artificial intelligence approach. Robotics and Computer-Integrated Manufacturing, 27(1), 157-163.

DOI: 10.1016/j.rcim.2010.07.003

Google Scholar