Numerical Simulation of Roller Hemming Operation on Convex Edge-Convex Surface Parts

Article Preview

Abstract:

This paper presents the roller hemming operation of FEE220BH sheet metal with convex edge-convex surface geometry. The investigation is focused on process parameters of bending angle and roller geometry whose effects have not been investigated in previous studies. A set of numerical simulations is designed to observe the multi response of the process parameters. The objective of the study is to determine the influences of these parameters on deformation, undesired wrinkling formation and hemming force which are directly related to the material reliability and the visual quality in the operation. The results are discussed to improve the outputs of the operation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-84

Citation:

Online since:

February 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Zhang, H. Hao, X. Wu, S. Hu, An experimental investigation of curved surface straight edge forming, J Manuf Process, 2 (2000) 241–246.

Google Scholar

[2] H. Livatyali, S.J. Larris, Experimental investigation on forming defects in flat surface–convex edge hemming: roll, recoil and warp, J Mater Process Technol, 153–154 (2004) 913–919.

DOI: 10.1016/j.jmatprotec.2004.04.425

Google Scholar

[3] H. Livatyali, A. Muderrisoglu, M.A. Ahmetoglu, N. Akgerman, G.L. Kinzel, T. Altan, Improvement of hem quality by optimizing flanging and pre-hemming operations using computer-aided die design, J Mater Process Technol, 98 (2000) 41–52.

DOI: 10.1016/s0924-0136(99)00304-0

Google Scholar

[4] H. Livatyali, T. Laxhuber, T. Altan, Experimental investigation of forming defects in flat surface–convex edge hemming, J Mater Process Technol, 146 (2004) 20–27.

DOI: 10.1016/s0924-0136(03)00840-9

Google Scholar

[5] H. Livatyali, T. Altan, Prediction and elimination of spring back in straight flanging using computer aided design methods. Part 1: experimental investigation, J Mater Process Technol, 117 (2001) 262–268.

DOI: 10.1016/s0924-0136(01)01164-5

Google Scholar

[6] H. Livatyali, H.C. Wu, T. Altan, Prediction and elimination of spring back in straight flanging using computer aided design methods. Part 2: FEM predictions and tool design, J Mater Process Technol, 120 (2002) 348–354.

DOI: 10.1016/s0924-0136(01)01161-x

Google Scholar

[7] H. Livatyali, G.L. Kinzel, T. Altan, Computer aided die design of straight flanging using approximate numerical analysis, J Mater Process Technol, 142 (2003) 532–543.

DOI: 10.1016/s0924-0136(03)00655-1

Google Scholar

[8] A. Muderrisoglu, M. Murata, S. Tufekci, M. Ahmetoglu, G.L. Kinzel, T. Altan, Bending, flanging and hemming of sheet—an experimental study, J Mater Process Technol, 59 (1996) 10–17.

DOI: 10.1016/0924-0136(96)02281-9

Google Scholar

[9] G. Lin, J. Li, H.S. Jack, W. Cai, A computational response surface study of three-dimensional aluminum hemming using solid-to-shell mapping, Trans ASME, 12 (2007) 360–368.

DOI: 10.1115/1.2515430

Google Scholar

[10] G. Zhang, X. Wu, S. Hu, A study on fundamental mechanisms of warp and recoil in hemming, J Eng Mater Technol, 123 (2001) 436–441.

DOI: 10.1115/1.1396348

Google Scholar

[11] N. Le Maoût, S. Thuillier, P.Y. Manach, Aluminum alloy damage evolution for different strain paths – Application to hemming process, Engineering Fracture Mechanics, 76 (2009) 1202–1214.

DOI: 10.1016/j.engfracmech.2009.01.018

Google Scholar

[12] N. Le Maoût, S. Thuillier, P.Y. Manach, Classical and Roll-hemming Processes of Pre-strained Metallic Sheets, Experimental Mechanics, 50 (2010) 1087-1097.

DOI: 10.1007/s11340-009-9297-7

Google Scholar

[13] N. Le Maoût, P.Y. Manach, S. Thuillier, Influence of prestrain on the numerical simulation of the roller hemming process, Journal of Materials Processing Technology, 212 (2012) 450–457.

DOI: 10.1016/j.jmatprotec.2011.10.008

Google Scholar

[14] S. Thuillier, N. Le Maoût, P.Y. Manach, D. Debois, Numerical simulation of the roll hemming process, J Mater Process Technol, 198 (2008) 226–233.

DOI: 10.1016/j.jmatprotec.2007.07.004

Google Scholar

[15] X. Hu, Z.Q. Lin, S.H. Li, Y.X. Zhao, Fracture limit prediction for roller hemming of aluminum alloy sheet, Materials and Design, 31 (2010) 1410–1416.

DOI: 10.1016/j.matdes.2009.08.039

Google Scholar

[16] X. Hu, Y.X. Zhao, S. Huang, S.H. Li, Z.Q. Lin, Numerical analysis of the roller hemming process, Int J Adv Manuf Technol, 62 (2012) 543–550.

DOI: 10.1007/s00170-011-3822-4

Google Scholar

[17] S. Gurgen, M.I. Gokler, H. Darendeliler, C.C. Celikkaya, K. Erden, Analysis of roller hemming process for a vehicle tailgate closure, AIP Conf Proc, 1532 (2013) 367–374.

DOI: 10.1063/1.4806848

Google Scholar

[18] G. Lin, S.J. Hu, M. Koc, W. Cai, M.L. Wenner, A Computational Response Surface Study of Curved Surface Curved Edge Aluminum Hemming Using Solid to Shell Mapping, ASME Int Conf on Manuf Sci and Eng, 21031 (2006) 267-276.

DOI: 10.1115/msec2006-21031

Google Scholar

[19] N. Le Maoût, S. Thuillier, P.Y. Manach, Drawing, Flanging and Hemming of Metallic Thin Sheets: A Multistep Process, Materials and Design, 31 (2010) 2725-2736.

DOI: 10.1016/j.matdes.2010.01.030

Google Scholar

[20] G. Lin, M. Koc, S.J. Hu, W. Cai, Three Dimensional Numerical Simulations of Curved Edge Curved Surface Hemming of Aluminum Alloy, ASME Int Mech Eng Cong and Expo, 60705 (2004) 503-511.

DOI: 10.1115/imece2004-60705

Google Scholar

[21] M. Dao, M. Li, A Micromechanics Study on Strain Localization Induced Fracture Initiation in Bending Using Crystal Plasticity Models, Philosophical Magazine, 81 (2001) 1997-(2020).

DOI: 10.1080/01418610108216649

Google Scholar

[22] R. Schleich, M. Sindel, M. Liewald, Investigation on the Effect of Curvature on Forming Limit Prediction for Aluminum Sheet Alloys, International Journal of Material Forming, 2 (2008) 69-74.

DOI: 10.1007/s12289-009-0394-z

Google Scholar

[23] R. Schleich, C. Held, M. Sindel, M. Liewald, Investigation on the Effect of Curvature and Sheet Thickness on Forming Limit Prediction for Aluminum Sheet Metal Alloys, International Journal of Material Forming, 2 (2009) 411-414.

DOI: 10.1007/s12289-009-0503-z

Google Scholar

[24] R. Schleich, M. Liewald, Development of an Anisotropic Failure Criterion for Characterising the Influence of Curvature on Forming Limits of Aluminum Sheet Metal Alloys, International Journal of Material Forming, 3 (2010) 1175- 1178.

DOI: 10.1007/s12289-010-0982-y

Google Scholar