Effect of Relative Density and Strain Rate on the Deformation Behaviour Ni-Ti Foam Made through Powder Metallurgy Route Using NH4(HCO3) as Space Holder

Article Preview

Abstract:

Ni-Ti foams of varying relative densities have been made by varying the size and volume fraction of NH4(HCO3), which was used as space holder. The green compacted pellets, after evaporation of NH4(HCO3), were sintered at 1100°C for 2 hrs. The XRD and EDX analysis confirms that there is no residual space holder. The extent of openness of cell walls increases with increase in porosity. The compressive stress-strain behavior of these foams varies with the relative density. The peak stress and energy absorption of these foam increases with relative density following power law and linear relationships respectively, and the densification strain decreases with relative density following a linear relationship. The pseudo elastic recovery strain and shape recovery strain decrease with increase in porosity. The overall recovery increases with decrease in degree of deformation. This phenomenological behavior indicates that these foams can be used for their shape memory effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-55

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Otsuka and C.M. Wayman, Shape memory materials. Cambridge, New York, Cambridge University Press; (1998).

Google Scholar

[2] Ying Zhao, Minoru Taya and HiroshiIzui, Study on energy absorbing composite structure made of concentric NiTi spring and porous NiTi, Int. J. Solids Struct. 43 (2006) 2497-2512.

DOI: 10.1016/j.ijsolstr.2005.06.043

Google Scholar

[3] Muhammad A Qidwai, Virginia G DeGiorgi, Numerical assessment of the dynamic behavior of shape memory alloy composite, Smart Mater. Struct. 13 (2004) 134-145.

DOI: 10.1088/0964-1726/13/1/015

Google Scholar

[4] Dana M. Elzay, AarashY.N. Sofia andHaydn N.G. Wadley, A shape memory based multifunctional structural actuator panel, Int. J. Solids Struct. 42 (2005) 1943-(1955).

DOI: 10.1016/j.ijsolstr.2004.05.034

Google Scholar

[5] Seung-Baik Kang, Kang-Sup Yoon, Ji-Soon Kim, Tae-Hyun Nam and Victor E. Gjunter, In vivo results of porous Ti-Ni shape memory alloy: bone response and growth, Mater. Trans. 43 (2002) 1045-1048.

DOI: 10.2320/matertrans.43.1045

Google Scholar

[6] LorenzaPetrini and Francesco Migliavacca, Biomedical applications of shape memory alloys". J. Metallurgy, doi: 10. 1155/2011/501483.

Google Scholar

[7] DanielaTarnită, D. N. Tarnită, N. Bizdoacă, I. Mindrilă and MirelaVasilescu, Properties and medical applications of shape memory alloys, Romanian J. Morphology and Embriology50 (1) (2009) 15-21.

Google Scholar

[8] S. Rhalmi, M. Odin, M. Assad, M. Tabrizian, C.H. Rivard, L.H. Yahia, Hard soft tissue and invitro cell response of nickel titanium: a biocompatibility evaluation, Biomed. Mater. Eng. 9 (1999): 151-62.

Google Scholar

[9] R.A. Ayers, S.J. Simske, T.A. Batman, A. Petkus, R.L. C Sachdevaand V.E. Gyunter, Effect of nitinol implantporosity on cranial bone ingrowth and apposition after 6 weeks, J. Biomed mater. Res. 45(1999) 42-47.

DOI: 10.1002/(sici)1097-4636(199904)45:1<42::aid-jbm6>3.0.co;2-q

Google Scholar

[10] AmpikaBansiddhi and David C. Dunand, Shape memory Ni-Ti foams produced by solid state replication with NaF, Intermetallics 15 (2007) 1612-1622.

DOI: 10.1016/j.intermet.2007.06.013

Google Scholar

[11] Christian Greiner, Scott M. Oppenheimer and David C. Dunand, High strength, low stiffness, porous NiTi with superelastic properties, David C Dunand, ActaBiomateri. 1 (2005) 705-716.

DOI: 10.1016/j.actbio.2005.07.005

Google Scholar

[12] A. Bansiddhi, T.D. sargeant, S.I. Stupp and D.C. Dunand, Porous NiTi for bone implants: A review, ActaBiomater, 4 (2008) 773-82.

DOI: 10.1016/j.actbio.2008.02.009

Google Scholar

[13] A. Bansiddhi and D.C. Dunand, Shape-memory NiTi foams produced by replication of NaCl space-holders, ActaBiomaterialia4 (2008) 1996-(2007).

DOI: 10.1016/j.actbio.2008.06.005

Google Scholar

[14] B. Yuan, X P Zhang, C Y chung, M.Q. Zeng.M. Zhu, A comparative study of the porous TiNi shape memory alloys fabricated by three different processes, Metall. Mater. Trans. A 37A (2006) 755-760.

DOI: 10.1007/s11661-006-0047-5

Google Scholar

[15] B. Bertheville, Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute, Biomaterials27 (2006) 1246.

DOI: 10.1016/j.biomaterials.2005.09.014

Google Scholar

[16] ZarikAydog˘ Mus¸ and S¸akirBor, Enhanced sintering of TiNi shape memory foams under Mgvapour atmosphere, Metall. Mater. Trans. A 43A (2012) 5173-5180.

DOI: 10.1007/s11661-012-1350-y

Google Scholar

[17] S. K. Sadrnezhadd, H. Arami, H. Keivan and R. Khalifezadeh, Powder Metallurgical Fabrication and Characterization of Nanostructured Porous NiTi Shape Memory Alloy, Mater. Manuf. Process 21 (2006) 727-735.

DOI: 10.1080/10426910600727882

Google Scholar

[18] Anselm J. Neurohr and D. C. Dunand, Mechanical anisotropy of shape memory NiTi with two dimensional networks of microchannels, Acta mater. 59(2011) 4616-4630.

DOI: 10.1016/j.actamat.2011.04.007

Google Scholar

[19] Yuya Arakawa, Makoto Kobashi and NaoyukiKanetake, Effect of Elemental powder size on foaming behavior of NiTi alloy made by Combustion shynthesis, Materials 5 (2012) 1267-1274.

DOI: 10.3390/ma5071267

Google Scholar

[20] ShuilinWua, XiangmeiLiu K.W.K. Yeung, Tao Hu, ZushunXu, Jonathan C.Y. Chung b, and Paul K. Chu , Hydrogen release from titanium hydride in foaming of orthopedic NiTi scaffolds, ActaBiomater. 7 (2011) 1387-1397.

DOI: 10.1016/j.actbio.2010.10.008

Google Scholar

[21] P. Bassani, E. Bassani, A. Tuissi, P. Giuliani and C. Zanotti, NonequiatomicNiTi alloy Produced by self propagating high temperature synthesis, J. Mater. Eng. Perf. 23(2014) 2373-2378.

DOI: 10.1007/s11665-014-1055-z

Google Scholar

[22] Y Zhao, M. Taya, Y.S. Kanga and A. Kawasaki, Compression behavior of porous NiTi shape memory alloy, Acta mater. 53 (2005) 337-343.

DOI: 10.1016/j.actamat.2004.09.029

Google Scholar

[23] J.Y. Xiong, Y.C. Li, X.J. Wang, P.D. Hodgsona and C.E. Wen, Titanium Nickel shape memory alloy foams for bone tissue engineering, J. Mechanical Behv. Biomed. Mater. 1(2008) 269-273.

DOI: 10.1016/j.jmbbm.2007.09.003

Google Scholar

[24] A Bansiddhiand D.C. Dunana, Processing of Ni-Ti foams by Transient Liquid phase sintering., J. Mater. EngPerf. 20 (2011) 511-516.

Google Scholar

[25] X.K. jhao, H.B. Sun, L. Lan, J.H. huang, H. Zhang and Y. Wang, Pore structures of high-porosity NiTi alloys made from elemental powders with NaCl temporary space-holders, Mater. Lett. 63(2009)2402-2404.

DOI: 10.1016/j.matlet.2009.07.069

Google Scholar

[26] M. L. Young, J.D. deFouw, J. Frenzel and D.C. Dunand, Cast replicated NiTiCu foams with superelastic properties, Metall. Mater. Trans. A 43A (2012) 2939-2944.

DOI: 10.1007/s11661-011-1060-x

Google Scholar

[27] D. P Mondal, Mahesh Patel, S. Das, A.K. Jha, Hemant Jain, G. Gupta, andS. B Arya, Titanium foam with coarser cell size and wide range of porosity using different types of evaporative space holder through powder metallurgy, Mater. Des. 63(2014).

DOI: 10.1016/j.matdes.2014.05.054

Google Scholar

[28] A. Paul and U. Ramamurty. Strain rate sensitivity of a closed-cell aluminium foam, Mater. Sci. Eng. A 281 (2000) 1-7.

Google Scholar

[29] Lee Sungsoo, Barthelat Francois, Moldovan Nicolaie, D. EspinosaHoracio and N. G WaldleyHaydn., Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials, Int. J. Solids Struct. 43 (2006) 53-73.

DOI: 10.1016/j.ijsolstr.2005.06.101

Google Scholar

[30] C. Grabe, O.T. Bruhus, On the viscous and strain rate dependent behavior of plycrystallineNiTi, Int. J. Solids Struct. 45 (2008) 1876-1895.

Google Scholar

[31] SanghaunKimandMaenghyo Cho, A strain rate effect of Ni-Ti shape memory alloy wire, Jpn. J. Appl. Phys. 49(2010) 1-5.

DOI: 10.1143/jjap.49.115801

Google Scholar

[32] D.P. Mondal, M.D. Goel and S. Das, Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam, Mater. Sci. Eng. A 507 (2009) 102-109.

DOI: 10.1016/j.msea.2009.01.019

Google Scholar

[33] M.D. Goel, D.P. Mondal, M.S. Yadav and S.K. Gupta, Effect of strain rate and relative density on compressive deformation behavior of aluminum cenosphere syntactic foam, Mater. Sci. Eng. A 590 (2014) 406-415.

DOI: 10.1016/j.msea.2013.10.048

Google Scholar

[34] ISO 13314: 2011Mechanical testing of metals. Ductilitytesting. Compression test for porousand cellular metals. Geneva, Switzerland.

Google Scholar