[1]
C. Suryanarayana, Mechanical alloying and milling, Prog. Mater Sci. 46 39-62 (2001).
Google Scholar
[2]
C. Suryanarayana, E. Ivanov, V.V. Boldyrev, The science and technology of mechanical alloying, Mater. Sci. Eng. A. 304–306 (2001) 151–158.
DOI: 10.1016/s0921-5093(00)01465-9
Google Scholar
[3]
H. J. Fecht, Yu. Ivanisenko, Nanostructured Materials and Composites Prepared by Solid State Processing, Nanostructured Materials-Processing, Properties and Potential Applications, Edited by C. C Koch, second Edition, William Andrews's publication, New york, 2006, pp.119-131.
DOI: 10.1016/b978-081551534-0.50006-3
Google Scholar
[4]
H. J. Fecht, G. Han, Z. Fu, W. L. Johnson, Metastable phase formation in the ZrAl binary system induced by mechanical alloying, J. Appl. Phys. 67 (1990) 1744.
DOI: 10.1063/1.345624
Google Scholar
[5]
A. Sagel, R. K. Wunderlich, J. H. Perepezko, and H. J. Fecht, Glass formation in a multicomponent Zr-based alloy by mechanical attrition and liquid undercooling, Appl. Phys. Lett. 70 (1997) 580.
DOI: 10.1063/1.118280
Google Scholar
[6]
A. R Yavari, P. J. Desre, T. Benamuer, Mechanically driven alloying of immiscible elements, Phys. Rev. Lett. 68 (1992) 2235-2238.
DOI: 10.1103/physrevlett.68.2235
Google Scholar
[7]
A. R. Yavari, Phase transformations in nanocrystalline alloys, Mater. Sci. Eng. A. 179-180 (1994) 20-26.
Google Scholar
[8]
C. Gente, M. Oehring, R. Bormann, Formation of thermodynamically unstable solid solutions in the Cu-Co system by mechanical alloying, Phys. Rev. B. 48 (1993) 13244-13252.
DOI: 10.1103/physrevb.48.13244
Google Scholar
[9]
R. B. Schwarz, W. L. Johnson, Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals, Phys. Rev. Lett. 51 (1983) 415-418.
DOI: 10.1103/physrevlett.51.415
Google Scholar
[10]
T. Klassen, U. Herr, R. S. Averback, Ball milling of systems with positive heat of mixing: effect of temperature in Ag–Cu, Acta. Mater. 45 (1997) 2921–2930.
DOI: 10.1016/s1359-6454(96)00388-6
Google Scholar
[11]
J. Eckert, J. C. Holzer, C. E. Krill III, W. L. Johnson, Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders, J. Appl. Phys. 73(6) (1993) 2794–2802.
DOI: 10.1063/1.353055
Google Scholar
[12]
B. S. Murty, M. Mohan Rao, S. Ranganathan, Nanocrystalline phase formation and extension of solid solubility by mechanical alloying in Ti-based systems, Nanostruct. Mater. 3 (1993) 459-467.
DOI: 10.1016/0965-9773(93)90113-p
Google Scholar
[13]
S. Scudino, M. Sakaliyska, K. B. Surreddi, J. Eckert, Mechanical alloying and milling of Al–Mg alloys, J. Alloys Compd. 483 (2009) 2–7.
DOI: 10.1016/j.jallcom.2008.07.161
Google Scholar
[14]
T. B. Massalski, Ed., Binary Alloy Phase Diagrams, 2nd ed., ASM International, (1990).
Google Scholar
[15]
A. Calka, W. Kaczmarek, J. S. Williams, Extended solid solubility in ball-milled Al-Mg alloys, J. Mater. Sci. 28 (1993) 15.
DOI: 10.1007/bf00349027
Google Scholar
[16]
C. Aguilar, V. Martiınez, L. Navea, O. Pavez, M. Santander, Thermodynamic analysis of the change of solid solubility in a binary system processed by mechanical alloying, J. Alloys Compd. 471 (2009) 336–340.
DOI: 10.1016/j.jallcom.2008.03.083
Google Scholar
[17]
S. Sheibani, S. Heshmati Manesh, A. Ataie, Influence of Al2O3 nanoparticles on solubility extension of Cr in Cu by mechanical alloying, Acta. Mater. 58 (2010) 6828–6834.
DOI: 10.1016/j.actamat.2010.09.012
Google Scholar
[18]
U. R. Kattner, Al–Fe, binary alloy phase diagrams, (ed. ) T. B. Massalski (Metals Park, Ohio: American Society for Metals) 1 (1986) 147.
Google Scholar
[19]
B. Huang, N. Tokizane, K. N. Ishihara, P. H. Shingu, S. Nasu, Amorphization of Al-Fe alloys formed by ball milling and repeated rolling, J. Non-Cryst. Solids, 117/118 (1990) 688.
DOI: 10.1016/0022-3093(90)90622-s
Google Scholar
[20]
X. P. Niu, L. Froyen, L. Delaey, C. Peytour, Effect of Fe content on the mechanical alloying and mechanical properties of Al-Fe alloys, J. Mater. Sci. 29 (1994) 3724-3732.
DOI: 10.1007/bf00357340
Google Scholar
[21]
D. K. Mukhopadhyay, C. Suryanarayana, F. H. Froes, Structural evolution in mechanically alloyed Al-Fe powders, Metall. Mater. Trans. A. 26 (1995) (1939).
DOI: 10.1007/bf02670665
Google Scholar
[22]
V. I. Fadeeva, A. V. Leonov, Amorphization and crystallization of Al-Fe alloys by mechanical alloying, Mater. Sci. Eng. A. 206 (1996) 90.
DOI: 10.1016/0921-5093(95)10002-4
Google Scholar
[23]
S. D Kaloshkin, V. V Tcherdynstev, A. I. Tomlin, D. V. Gunderov, V. V. Stolyarov, Y. V. Baldokhin, I. G. Brodova, E. V. Shelekhov, Composed phases and microhardness of aluminium-rich aluminium-iron alloys obtained by rapid quenching, mechanical alloying and high pressure torsion deformation, Mater. Trans. JIM. 43 (2002).
DOI: 10.2320/matertrans.43.2031
Google Scholar
[24]
A. Tonejc, A. Bonefasčié, Al-rich metastable Al-Ti solid solutions, Scr. Metall. 3 (1969) 145.
Google Scholar
[25]
R. M. K Young, T. W. Clyne, An Al-Fe intermetallic phase formed during controlled solidification, Scr. Metall. 15 (1981) 1211.
DOI: 10.1016/0036-9748(81)90301-x
Google Scholar
[26]
G. Riontino, A. Zanada, A precipitation study of two rapidly solidified Al-Fe alloys, Mater. Sci. Eng. A. 179–180 (1994) 323.
DOI: 10.1016/0921-5093(94)90219-4
Google Scholar
[27]
B. Badan, M. Margini, A. Zambon, Al-Fe solid solutions in alloys obtained by melt spinning, Scr. Mater. 35 (1996) 13.
DOI: 10.1016/1359-6462(96)00089-9
Google Scholar
[28]
S. S Nayak, B. S. Murty, and S. K. Pabi, Structure of nanocomposites of Al–Fe alloys prepared by mechanical alloying and rapid solidification processing, Bull. Mater. Sci. 31 (3) (2008) 449-454.
DOI: 10.1007/s12034-008-0070-9
Google Scholar
[29]
O. Yifang, Z. Xiaping, W. U. Weiming, Extended solid solubility for Al-W binary system by mechanical alloying, Sci. China, Ser. A. 43 (2) (2000) 180-184.
DOI: 10.1007/bf02876044
Google Scholar
[30]
E. Ma, J. H. He, X. Schilling, Mechanical alloying of immiscible elements: Ag-Fe contrasted with Cu-Fe, Phys. Rev. B. 55 (9) (1997) 5542.
DOI: 10.1103/physrevb.55.5542
Google Scholar
[31]
A. Pich, J. P Silva, Constraining new interactions with leptonic τ decays, Phys. Rev. D. 52 (1995) 4006.
DOI: 10.1103/physrevd.52.4006
Google Scholar
[32]
F. Heringhaus, D. Raabe, Recent advances in the manufacturing of copper-base composites, J. Mater. Process. Technol. 59, (1996) 367–372.
DOI: 10.1016/0924-0136(95)02179-5
Google Scholar
[33]
R. S. Lei, M. P. Wang, Z. Li, H. G. Wei, W. C. Yang, Y. L. Jia, S. Gong, Structure evolution and solid solubility extension of copper–niobium powders during mechanical alloying, Mater. Sci. Eng. A. 528, (2011) 4475–4481.
DOI: 10.1016/j.msea.2011.02.083
Google Scholar
[34]
W. B Pearson, A handbook of lattice spacings and structures of metals and alloys, Oxford: Pergamon, UK, (1967).
Google Scholar
[35]
W. Hume-Rothery, R.E. Smallman, C.W. Haworth, The structure of metals and alloys, London: Institute of Metals, (1969).
Google Scholar
[36]
S. Xi, K. Zuo, X. Li, G. Ran, J. Zhou, Study on the solid solubility extension of Mo in Cu by mechanical alloying Cu with amorphous Cr(Mo), Acta Mater. 56, (2008) 6050–6060.
DOI: 10.1016/j.actamat.2008.08.013
Google Scholar
[37]
A. K. Niessen, F. R. de Boer, R. Boom, P. F. de Chatel, W. C. M. Mattens, and A. R. Miedema, Model predictions for the enthalpy of formation of transition metal alloys II, CALPHAD. 7 (1983) 51-70.
DOI: 10.1016/0364-5916(83)90030-5
Google Scholar