Effects of Mechanical Alloying on Solid Solubility

Article Preview

Abstract:

Mechanical alloying (MA) is a potential processing method for various equilibrium and non-equilibrium alloy phases such as supersaturated solid solution, metastable crystalline, amorphous, quasi-crystalline phases, nanostructures. Compared to conventional high temperature material processing such as melting and casting, improvement of solid solubility limit results from mechanical alloying at room temperature. The solid solubility increases with increase in milling time due to enhanced stress assisted atomic diffusion during particle refinement and reaches a saturation level at higher milling time. The extension of solid solubility is attributed to thermodynamic, dynamic or kinetic factors such as high dislocation density due to severe plastic deformation during particle refinement and enhanced diffusivity during MA. The review aims to discuss the insight of MA than other non-equilibrium processing in terms of achieving higher solubility, reasoning and mechanism of solubility improvement during MA of different alloy systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-24

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Suryanarayana, Mechanical alloying and milling, Prog. Mater Sci. 46 39-62 (2001).

Google Scholar

[2] C. Suryanarayana, E. Ivanov, V.V. Boldyrev, The science and technology of mechanical alloying, Mater. Sci. Eng. A. 304–306 (2001) 151–158.

DOI: 10.1016/s0921-5093(00)01465-9

Google Scholar

[3] H. J. Fecht, Yu. Ivanisenko, Nanostructured Materials and Composites Prepared by Solid State Processing, Nanostructured Materials-Processing, Properties and Potential Applications, Edited by C. C Koch, second Edition, William Andrews's publication, New york, 2006, pp.119-131.

DOI: 10.1016/b978-081551534-0.50006-3

Google Scholar

[4] H. J. Fecht, G. Han, Z. Fu, W. L. Johnson, Metastable phase formation in the ZrAl binary system induced by mechanical alloying, J. Appl. Phys. 67 (1990) 1744.

DOI: 10.1063/1.345624

Google Scholar

[5] A. Sagel, R. K. Wunderlich, J. H. Perepezko, and H. J. Fecht, Glass formation in a multicomponent Zr-based alloy by mechanical attrition and liquid undercooling, Appl. Phys. Lett. 70 (1997) 580.

DOI: 10.1063/1.118280

Google Scholar

[6] A. R Yavari, P. J. Desre, T. Benamuer, Mechanically driven alloying of immiscible elements, Phys. Rev. Lett. 68 (1992) 2235-2238.

DOI: 10.1103/physrevlett.68.2235

Google Scholar

[7] A. R. Yavari, Phase transformations in nanocrystalline alloys, Mater. Sci. Eng. A. 179-180 (1994) 20-26.

Google Scholar

[8] C. Gente, M. Oehring, R. Bormann, Formation of thermodynamically unstable solid solutions in the Cu-Co system by mechanical alloying, Phys. Rev. B. 48 (1993) 13244-13252.

DOI: 10.1103/physrevb.48.13244

Google Scholar

[9] R. B. Schwarz, W. L. Johnson, Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals, Phys. Rev. Lett. 51 (1983) 415-418.

DOI: 10.1103/physrevlett.51.415

Google Scholar

[10] T. Klassen, U. Herr, R. S. Averback, Ball milling of systems with positive heat of mixing: effect of temperature in Ag–Cu, Acta. Mater. 45 (1997) 2921–2930.

DOI: 10.1016/s1359-6454(96)00388-6

Google Scholar

[11] J. Eckert, J. C. Holzer, C. E. Krill III, W. L. Johnson, Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders, J. Appl. Phys. 73(6) (1993) 2794–2802.

DOI: 10.1063/1.353055

Google Scholar

[12] B. S. Murty, M. Mohan Rao, S. Ranganathan, Nanocrystalline phase formation and extension of solid solubility by mechanical alloying in Ti-based systems, Nanostruct. Mater. 3 (1993) 459-467.

DOI: 10.1016/0965-9773(93)90113-p

Google Scholar

[13] S. Scudino, M. Sakaliyska, K. B. Surreddi, J. Eckert, Mechanical alloying and milling of Al–Mg alloys, J. Alloys Compd. 483 (2009) 2–7.

DOI: 10.1016/j.jallcom.2008.07.161

Google Scholar

[14] T. B. Massalski, Ed., Binary Alloy Phase Diagrams, 2nd ed., ASM International, (1990).

Google Scholar

[15] A. Calka, W. Kaczmarek, J. S. Williams, Extended solid solubility in ball-milled Al-Mg alloys, J. Mater. Sci. 28 (1993) 15.

DOI: 10.1007/bf00349027

Google Scholar

[16] C. Aguilar, V. Martiınez, L. Navea, O. Pavez, M. Santander, Thermodynamic analysis of the change of solid solubility in a binary system processed by mechanical alloying, J. Alloys Compd. 471 (2009) 336–340.

DOI: 10.1016/j.jallcom.2008.03.083

Google Scholar

[17] S. Sheibani, S. Heshmati Manesh, A. Ataie, Influence of Al2O3 nanoparticles on solubility extension of Cr in Cu by mechanical alloying, Acta. Mater. 58 (2010) 6828–6834.

DOI: 10.1016/j.actamat.2010.09.012

Google Scholar

[18] U. R. Kattner, Al–Fe, binary alloy phase diagrams, (ed. ) T. B. Massalski (Metals Park, Ohio: American Society for Metals) 1 (1986) 147.

Google Scholar

[19] B. Huang, N. Tokizane, K. N. Ishihara, P. H. Shingu, S. Nasu, Amorphization of Al-Fe alloys formed by ball milling and repeated rolling, J. Non-Cryst. Solids, 117/118 (1990) 688.

DOI: 10.1016/0022-3093(90)90622-s

Google Scholar

[20] X. P. Niu, L. Froyen, L. Delaey, C. Peytour, Effect of Fe content on the mechanical alloying and mechanical properties of Al-Fe alloys, J. Mater. Sci. 29 (1994) 3724-3732.

DOI: 10.1007/bf00357340

Google Scholar

[21] D. K. Mukhopadhyay, C. Suryanarayana, F. H. Froes, Structural evolution in mechanically alloyed Al-Fe powders, Metall. Mater. Trans. A. 26 (1995) (1939).

DOI: 10.1007/bf02670665

Google Scholar

[22] V. I. Fadeeva, A. V. Leonov, Amorphization and crystallization of Al-Fe alloys by mechanical alloying, Mater. Sci. Eng. A. 206 (1996) 90.

DOI: 10.1016/0921-5093(95)10002-4

Google Scholar

[23] S. D Kaloshkin, V. V Tcherdynstev, A. I. Tomlin, D. V. Gunderov, V. V. Stolyarov, Y. V. Baldokhin, I. G. Brodova, E. V. Shelekhov, Composed phases and microhardness of aluminium-rich aluminium-iron alloys obtained by rapid quenching, mechanical alloying and high pressure torsion deformation, Mater. Trans. JIM. 43 (2002).

DOI: 10.2320/matertrans.43.2031

Google Scholar

[24] A. Tonejc, A. Bonefasčié, Al-rich metastable Al-Ti solid solutions, Scr. Metall. 3 (1969) 145.

Google Scholar

[25] R. M. K Young, T. W. Clyne, An Al-Fe intermetallic phase formed during controlled solidification, Scr. Metall. 15 (1981) 1211.

DOI: 10.1016/0036-9748(81)90301-x

Google Scholar

[26] G. Riontino, A. Zanada, A precipitation study of two rapidly solidified Al-Fe alloys, Mater. Sci. Eng. A. 179–180 (1994) 323.

DOI: 10.1016/0921-5093(94)90219-4

Google Scholar

[27] B. Badan, M. Margini, A. Zambon, Al-Fe solid solutions in alloys obtained by melt spinning, Scr. Mater. 35 (1996) 13.

DOI: 10.1016/1359-6462(96)00089-9

Google Scholar

[28] S. S Nayak, B. S. Murty, and S. K. Pabi, Structure of nanocomposites of Al–Fe alloys prepared by mechanical alloying and rapid solidification processing, Bull. Mater. Sci. 31 (3) (2008) 449-454.

DOI: 10.1007/s12034-008-0070-9

Google Scholar

[29] O. Yifang, Z. Xiaping, W. U. Weiming, Extended solid solubility for Al-W binary system by mechanical alloying, Sci. China, Ser. A. 43 (2) (2000) 180-184.

DOI: 10.1007/bf02876044

Google Scholar

[30] E. Ma, J. H. He, X. Schilling, Mechanical alloying of immiscible elements: Ag-Fe contrasted with Cu-Fe, Phys. Rev. B. 55 (9) (1997) 5542.

DOI: 10.1103/physrevb.55.5542

Google Scholar

[31] A. Pich, J. P Silva, Constraining new interactions with leptonic τ decays, Phys. Rev. D. 52 (1995) 4006.

DOI: 10.1103/physrevd.52.4006

Google Scholar

[32] F. Heringhaus, D. Raabe, Recent advances in the manufacturing of copper-base composites, J. Mater. Process. Technol. 59, (1996) 367–372.

DOI: 10.1016/0924-0136(95)02179-5

Google Scholar

[33] R. S. Lei, M. P. Wang, Z. Li, H. G. Wei, W. C. Yang, Y. L. Jia, S. Gong, Structure evolution and solid solubility extension of copper–niobium powders during mechanical alloying, Mater. Sci. Eng. A. 528, (2011) 4475–4481.

DOI: 10.1016/j.msea.2011.02.083

Google Scholar

[34] W. B Pearson, A handbook of lattice spacings and structures of metals and alloys, Oxford: Pergamon, UK, (1967).

Google Scholar

[35] W. Hume-Rothery, R.E. Smallman, C.W. Haworth, The structure of metals and alloys, London: Institute of Metals, (1969).

Google Scholar

[36] S. Xi, K. Zuo, X. Li, G. Ran, J. Zhou, Study on the solid solubility extension of Mo in Cu by mechanical alloying Cu with amorphous Cr(Mo), Acta Mater. 56, (2008) 6050–6060.

DOI: 10.1016/j.actamat.2008.08.013

Google Scholar

[37] A. K. Niessen, F. R. de Boer, R. Boom, P. F. de Chatel, W. C. M. Mattens, and A. R. Miedema, Model predictions for the enthalpy of formation of transition metal alloys II, CALPHAD. 7 (1983) 51-70.

DOI: 10.1016/0364-5916(83)90030-5

Google Scholar