Scale-Dependent Crack Modeling for Investigation the Effect of Geometrically Necessary Dislocations in Micro/Nano Grain Size of Copper

Article Preview

Abstract:

In this study, a scale-dependent model is employed to investigate the size effects of copper on the behavior of the crack-tip. This model includes the homogeneous and non-homogeneous strain hardening based on the wavelet interpretation of size effect. Introducing additional micro/nano structural considerations together with decreasing grain size, different size effects can be obtained. As the size dependency is not taken into account in conventional plasticity, an enhanced theory which is related to the strain gradient introduces a length scale will give more realistic representations of state variables near the crack-tip. Accordingly, the contribution of geometrically necessary dislocations (GNDs) activity on strengthening and stress concentration factor is identified in the crack-tip. Finally, the affected zone which is dominated by presence of GNDs is identified

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-16

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Petch and R. Armstrong, Work hardening in cleavage fracture toughness, Acta Metal, vol. 37, pp.2279-2285, (1989).

DOI: 10.1016/0001-6160(89)90155-7

Google Scholar

[2] E. Smith and J. Barnaby, Crack nucleation in crystalline solids, Metal Sci J, vol. 1, pp.56-64, (1967).

Google Scholar

[3] S. Kwun and S. Park, Plastic zone size measurement by critical grain growth method, Scripta Metal, vol. 21, pp.797-800, (1987).

DOI: 10.1016/0036-9748(87)90325-5

Google Scholar

[4] G. Irwin, Plastic zone near a crack and fracture toughness. in mechanical and metallurgical behavior of sheet materials, 7th sagamore ordnance materials research conference Syracuse Univ. Res. Inst N.Y., pp.63-78, (1961).

Google Scholar

[5] R. Armstrong and S. D. Antolovich, The grain size dependence of cleavage cracking in a-iron, 18th European conference on fracture , Dresden, Germany, August 30-September, vol. 3, (2010).

Google Scholar

[6] S. Byon, H. Kim, and Y. Lee, Investigation of the size effect on crack propagation using finite element method and strain gradient plasticity, Journal of Materials Processing Technology, vol. 191, pp.193-197, (2007).

DOI: 10.1016/j.jmatprotec.2007.03.086

Google Scholar

[7] S. Qu, Y. Huang, H. Jiang, C. liu, P. Wu, and K. Hwang, Fracture analysis in the conventional theory of mechanism-based strain gradient (cmsg) plasticity, International Journal of Fracture, vol. 129, pp.199-220, (2004).

DOI: 10.1023/b:frac.0000047786.40200.f8

Google Scholar

[8] J. Chen, Y. Wei, Y. Huang, J. Hutchinson, and K. Hwang, The crack tip fields in strain gradient plasticity: the asymptotic and numerical analyses, Eng. Fract. Mech., vol. 64, pp.625-648, (1999).

DOI: 10.1016/s0013-7944(99)00073-9

Google Scholar

[9] Z. Xia and J. Hutchinson, Crack tip fields in strain gradient plasticity, J. Mech. Phys. Solids, vol. 44, pp.1621-1648, (1996).

DOI: 10.1016/0022-5096(96)00035-x

Google Scholar

[10] S. Chen and T. Wang, Finite element solutions for plane strain mode i crack with strain gradient effects, International Journal of Solids and Structures, vol. 39, pp.1241-1257, (2002).

DOI: 10.1016/s0020-7683(01)00233-5

Google Scholar

[11] K. Hwang, H. Jiang, Y. Huang, and H. Gao, Finite deformation analysis of mechanism-based strain gradient plasticity: torsion and crack tip field, Int. J. Plast., vol. 19, pp.235-251, (2003).

DOI: 10.1016/s0749-6419(01)00039-0

Google Scholar

[12] H. Jiang, Y. Huang, Z. Zhuang, and K. Hwang, Fracture in mechanism-based strain gradient plasticity, Journal of the Mechanics and Physics of Solids, vol. 49, pp.979-993, (2001).

DOI: 10.1016/s0022-5096(00)00070-3

Google Scholar

[13] Y. Wei and J. Hutchinson, Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity, J. Mech. Phys. Solids, vol. 45, pp.1253-1273, (1997).

DOI: 10.1016/s0022-5096(97)00018-5

Google Scholar

[14] Y. Wei, X. Qui, and K. Hwang, Steady-state crack growth and fracture work based on the theory of mechanism-based strain gradient plasticity, Eng. Fract. Mech., vol. 71, pp.107-125, (2004).

DOI: 10.1016/s0013-7944(03)00065-1

Google Scholar

[15] U. Komaragiri, S. R. Agnew, R. P. Gangloff, and M. R. Begley, The role of macroscopic hardening and individual length-scales on crack tip stress elevation from phenomenological strain gradient plasticity, Journal of the Mechanics and Physics of Solids, vol. 56, pp.3527-3540, (2008).

DOI: 10.1016/j.jmps.2008.08.007

Google Scholar

[16] L. Mikkelsen and S. Goutianos, Suppressed plastic deformation at blunt crack tips due to strain gradient effects, Int. J. Solids Struct., vol. 46, pp.4430-4436, (2009).

DOI: 10.1016/j.ijsolstr.2009.09.001

Google Scholar

[17] S. Goutianos, Mode i and mixed mode crack-tip fields in strain gradient plasticity, International Journal of Non-Linear Mechanics, vol. 46, pp.1223-1231, (2011).

DOI: 10.1016/j.ijnonlinmec.2011.06.001

Google Scholar

[18] N. Fleck and J. Hutchinson, Strain gradient plasticity, Adv. Appl. Mech., vol. 37, pp.295-361, (1997).

Google Scholar

[19] N. Fleck and J. Hutchinson, A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, vol. 49, pp.2245-2271, (2001).

DOI: 10.1016/s0022-5096(01)00049-7

Google Scholar

[20] W. Nix and H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solids, vol. 46, pp.411-425, (1998).

DOI: 10.1016/s0022-5096(97)00086-0

Google Scholar

[21] H. Gao, Y. Huang, W. Nix, and J. Hutchinson, Mechanism-based strain gradient plasticity - i. theory, J. Mech. Phys. Solids, vol. 47, pp.1239-1263, (1999).

Google Scholar

[22] S. D. Antolovich and R. W. Armstrong, Plastic strain localization in metals: origins and consequences, Progress in Materials Science, vol. 59, pp.1-160, (2014).

DOI: 10.1016/j.pmatsci.2013.06.001

Google Scholar

[23] E. Glaessgen, E. Saether, S. Smith, J. Hochhalter, V. Yamakov, and V. Gupta, Modeling and characterization of damage processes in metallic materials, in Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, pp.2011-2177, (2011).

DOI: 10.2514/6.2011-2177

Google Scholar

[24] Z. Zhang and R. Clifton, Shear band propagation from a crack tip subjected to mode ii shear wave loading, International journal of solids and structures, vol. 44, no. 6, pp.1900-1926, (2007).

DOI: 10.1016/j.ijsolstr.2006.09.030

Google Scholar

[25] Z. Zhang and R. Clifton, Shear band propagation from a crack tip, Journal of the Mechanics and Physics of Solids, vol. 51, no. 11, pp.1903-1922, (2003).

DOI: 10.1016/j.jmps.2003.09.027

Google Scholar

[26] I. Tsagrakis, A. Konstantinidis, and E. Aifantis, Strain gradient and wavelet interpretation of size effects in yield and strength, Mechanics of materials, vol. 35, no. 8, pp.733-745, (2003).

DOI: 10.1016/s0167-6636(02)00205-3

Google Scholar

[27] K. Aifantis and A. Konstantinidis, Yielding and tensile behavior of nanocrystalline copper, Materials Science and Engineering A, vol. 503, pp.198-201, (2009).

DOI: 10.1016/j.msea.2008.04.084

Google Scholar

[28] H. Li, X. huai Dong, Y. Shen, R. Zhou, A. Diehl, H. Hagenah, U. Engel, M. Merklein, and J. Cao, Analysis of microbending of cuzn37 brass foils based on strain gradient hardening models, Journal of Materials Processing Technology, vol. 212, pp.653-661, (2012).

DOI: 10.1016/j.jmatprotec.2011.10.007

Google Scholar

[29] H. Lee, S. Ko, J. Han, H. Park, and W. Hwang, Novel analysis for nanoindentation size effect using strain gradient plasticity, Scripta Materialia, vol. 53, pp.1135-1139, (2005).

DOI: 10.1016/j.scriptamat.2005.07.027

Google Scholar

[30] S. Byon and Y. Lee, Calculation of strain gradient in flow formulation using strain surface function and its applications to micro rolling, Journal of Materials Processing Technology, vol. 192- 193, pp.218-224, (2007).

DOI: 10.1016/j.jmatprotec.2007.04.070

Google Scholar

[31] T. Belystchko, W. Liu, and B. Morn, Nonlinear finite element method for continua and structures. John Wiley & Sons Ltd, (2000).

Google Scholar

[32] J. Simo and T. J. R. Hughes, Computational Inelasticity, vol. 7. Springer-Verlag, (1998).

Google Scholar

[33] L. Mikkelsen, Implementing a gradient dependent plasticity model in abaqus, SIMULIA, Paris, France, pp.482-492, (2007).

Google Scholar

[34] K. R. A. Al-Rub and G. Z. Voyiadjis, Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro-and nano-indentation experiments, International Journal of Plasticity, vol. 20, pp.1139-1182, (2004).

DOI: 10.1016/j.ijplas.2003.10.007

Google Scholar

[35] D. Duan, N. Wu, W. Slaughter, and S. X. Mao, Length scale effect on mechanical behavior due to strain gradient plasticity, Materials Science and Engineering A, vol. 303, pp.241-249, (2001).

DOI: 10.1016/s0921-5093(00)01907-9

Google Scholar

[36] M. H. Sadd, Elasticity. Elsevier Inc, (2009).

Google Scholar