Microstructures and Synthesis of Noble Metal-Based Bulk Metallic Glasses (Zr-Be-Ni-Ti)

Article Preview

Abstract:

High-energy ball-milling in hexane medium was employed to prepare Nobel Zr-based bulk metallic glasses (BMGs) alloy of three different nominal compositions Zr47Be23Ni15Ti15, Zr50Be20Ni15Ti15 and Zr52Be18Ni15Ti15, numbers indicate at.%). The glass forming ability was found to increase with decreasing Zr and increasing Be content, which can be ascribed to the enhanced atomic size mismatch of the constituents on Be addition. Amorphous Zr47Be23Ni15Ti15 powder undergoes two-stage crystallization with onset temperatures at 640 and 700 K and glass transition temperature Tg at 566 K. In contrast, the Zr50Be20Ni15Ti15 and Zr52Be18Ni15Ti15 samples remained crystalline to a certain extent even after prolonged milling and contained FCC Zr crystallites. Structural characterization was done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). In addition, thermal analyses were performed by means of differential scanning calorimetry (DSC) thermogram to justify the experimental findings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-6

Citation:

Online since:

June 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Pekarskaya, C.P. Kim, W.L. Johnson, J. Mater. Res. 16 (2001) 2513.

Google Scholar

[2] W.J. Wright, R. Saha, W.D. Nix, Mater. Trans. JIM 42 (2001) 642.

Google Scholar

[3] W.J. Wright, R.B. Schwarz, W.D. Nix, Mater. Sci. Eng. A 319–321(2001) 229.

Google Scholar

[4] A. Inoue, Acta Mater. 48 (2000) 279.

Google Scholar

[5] A. Peker, W. L. Johnson, Appl. Phys. Lett. 63 (1993) 2342.

Google Scholar

[6] V. Cicek, M. Ozdemir, International Journal of Chemistry 5 Issue 1 (2013) 26.

Google Scholar

[7] T.G. Nieh, C. Schuh, J. Wadsworth, Y. Li, Intermetallics 10 (2002) 1177.

Google Scholar

[8] Z.C. Zhong, X.Y. Jiang and A.L. Greer, Phil. Mag. B 76 (1997) 505.

Google Scholar

[9] C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1.

Google Scholar

[10] M.S. El-Eskandarany, K. Aoki and K. Suzuki, Scripta Metall. Mater. 36 (1997) 1001.

Google Scholar

[11] D.J. Sordelet, E. Rozhkova, M.F. Besser and M.J. Kramer, J. Non-Cryst. Solids 317 (2003) p.137.

Google Scholar

[12] Y. Kawamura, H. Kato, A. Inoue and T. Masumoto, Appl. Phys. Lett. 67 (1995) (2008).

Google Scholar

[13] M. Mirzaee, R. Changizi, B. Alinejad, Journal of Engineering & Applied Sciences 7 Issue 12 (2012) 1533.

Google Scholar

[14] D.J. Sordelet, E. Rozhkova, M.F. Besser and M.J. Kramer, J. Non-Cryst. Solids 317 (2003) 137.

Google Scholar

[15] J. Robertson, J.T. Im, I. Karaman, K.T. Hartwig and I.E. Anderson, J. Non-Cryst. Solids 317 (2003) 144.

Google Scholar

[16] H.J. Kim, J.K. Lee, S.Y. Shin, H.G. Jeong, D.H. Kim and J.C. Bae, Intermetallics 12 (2004) 1109.

Google Scholar

[17] K. Ozaki, T. Nishio, A. Matsumoto and K. Kobayashi, Mater. Sci. Eng. A 375–377 (2004) 857.

Google Scholar

[18] N. Zheng, R. T. Qu, S. Pauly, M. Calin, T. Gemming, Z. F. Zhang, and J. Eckert, Appl. Phys. Lett. 100 (2012) 141901.

Google Scholar

[19] P. Nandi, P.P. Chattopadhyay, S.K. Pabi and I. Manna, Mater. Phys. Mech. 4 (2002) 116.

Google Scholar

[20] W. D. Liu and K. X. Liu, Appl. Phys. Lett. 100 (2012) 141904.

Google Scholar

[21] J. Bassu and S. Ranganathan, Intermetallics 12 (2004) 1045.

Google Scholar