Review of Resistance Spot Welding Sheets: Processes and Failure Mode

Article Preview

Abstract:

The engineering parts joining by the spot welding require acceptable properties to survive the loading conditions XE "temperature". Several studies show that the welding variables have an effect on the properties of spot nugget XE "nugget" and on the future cracking. This review summarizes the resistance spot welding process (RSW). It introduces the basic spot welding principles, experiments XE"experiments" , limitation and defects XE "defects". The new concepts and awareness were presented. The results from the series of scientific works and literature are discussed. The metal’s weldability, XE "spotweldability" strength, XE"strength" and fracture are the main topics in several structural analysis. The welding variables effect on the mechanical properties and performance XE "mechanicalproperties" of the structures is the key analysis. In general, the increasing of the heat input by adjusting the current, time, and pressure producing higher weld area in turn enhance the toughness. However, by increasing the weld area, the defects and cracking tend to appear. Hence, a desired weld size with the mechanical properties is required. The nugget fracture mode is changing from plug or button tearing to shear failure mode depending on the weld properties. The crack grows either from the internal defects or around the nugget.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-57

Citation:

Online since:

June 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. S. Hwang, M. J. Kang, and D. C. Kim, Expulsion reduction in resistance spot welding by controlling of welding current waveform, in Procedia Engineering, 2011, vol. 10, p.2775–2781.

DOI: 10.1016/j.proeng.2011.04.461

Google Scholar

[2] A. M. Al-Mukhtar and Q. Doos, The Spot Weldability of Carbon Steel Sheet, Adv. Mater. Sci. Eng., vol. 2013, p.1–6, (2013).

DOI: 10.1155/2013/146896

Google Scholar

[3] A. Al-Mukhtar and Q. Doos, Cracking Phenomenon in Spot Welded Joints of Austenitic Stainless Steel, Mater. Sci. Appl., vol. 4, no. October, p.656–662, (2013).

DOI: 10.4236/msa.2013.410081

Google Scholar

[4] B. Lang, D. Q. Sun, Z. Z. Xuan, and X. F. Qin, Hot Cracking of Resistance Spot Welded Magnesium Alloy, ISIJ International, vol. 48, no. 1. p.77–82, (2008).

DOI: 10.2355/isijinternational.48.77

Google Scholar

[5] a. M. Pereira, J. M. Ferreira, a. Loureiro, J. D. M. Costa, and P. J. Bártolo, Effect of process parameters on the strength of resistance spot welds in 6082-T6 aluminium alloy, Mater. Des., vol. 31, no. 5, p.2454–2463, May (2010).

DOI: 10.1016/j.matdes.2009.11.052

Google Scholar

[6] V. Acoff, R. Thompson, R. Griffin, and B. Radhakrishnan, Effect of heat treatment on microstructure and microhardness of spot welds in Ti-26A1-11Nb, Mater. Sci. Eng. A, vol. 152, no. 1–2, p.304–309, May (1992).

DOI: 10.1016/b978-1-85166-822-9.50050-9

Google Scholar

[7] H. Aydin, A. Bayram, and I. Durgun, The effect of post-weld heat treatment on the mechanical properties of 2024-T4 friction stir-welded joints, Mater. Des., vol. 31, no. 5, p.2568–2577, (2010).

DOI: 10.1016/j.matdes.2009.11.030

Google Scholar

[8] T. Kim, Y. S. Lee, J. Lee, and S. H. Rhee, A Study of Nondestructive Weld Quality Inspection and Estimation during Resistance Spot Welding, Key Eng. Mater., vol. 270–273, p.2338–2344, (2004).

DOI: 10.4028/www.scientific.net/kem.270-273.2338

Google Scholar

[9] American Welding Society. (1985).

Google Scholar

[10] T. A. Welder, Welding Aluminum Wire feeder Technology The American Welder We ' ve Got, Quality, no. April, (2006).

Google Scholar

[11] P. -C. Wang and K. W. Ewing, Fracture Mechanics Analysis of Fatigue Resistance of Spot Welded Coach-Peel Joints, Fatigue Fract. Eng. Mater. Struct., vol. 14, no. 9, p.915–930, Nov. (1991).

DOI: 10.1016/0142-1123(92)90453-j

Google Scholar

[12] T. Snow, Articles - How to Improve Spot-Welding Performance | Metalforming Magazine, " 2014. [Online]. Available: http: /www. metalformingmagazine. com/magazine/article. asp, aid=9505. [Accessed: 15-Apr-2016].

Google Scholar

[13] I. O. Santos, W. Zhang, V. M. Gonçalves, N. Bay, and P. a. F. Martins, Weld bonding of stainless steel, Int. J. Mach. Tools Manuf., vol. 44, no. 14, p.1431–1439, Nov. (2004).

DOI: 10.1016/j.ijmachtools.2004.06.010

Google Scholar

[14] T. Triyono, Y. Purwaningrum, and I. Chamid, Critical Nugget Diameter of Resistance Spot Welded Stiffened Thin Plate Structure, Mod. Appl. Sci., vol. 7, no. 7, p.17–22, (2013).

DOI: 10.5539/mas.v7n7p17

Google Scholar

[15] W. Liu, C. Sun, X. Xu, Y. Zuo, and J. Lin, The influences of nugget diameter on the mechanical properties and the failure mode of resistance spot-welded metastable austenitic stainless steel, Mater. Des., vol. 33, no. 1, p.292–299, Jan. (2012).

DOI: 10.1016/j.matdes.2011.06.071

Google Scholar

[16] J. H. Song, H. G. Noh, S. M. Akira, H. S. Yu, H. Y. Kang, and S. M. Yang, Analysis of effective nugget size by infrared thermography in spot weldment, Int. J. Automot. Technol., vol. 5, no. 1, p.55–59, (2004).

Google Scholar

[17] J. B. Jordon, M. F. Horstemeyer, S. R. Daniewicz, H. Badarinarayan, and J. Grantham, Fatigue Characterization and Modeling of Friction Stir Spot Welds in Magnesium AZ31 Alloy, Journal of Engineering Materials and Technology, vol. 132, no. 4. p.041008, (2010).

DOI: 10.1115/1.4002330

Google Scholar

[18] J. B. Jordon, M. F. Horstemeyer, J. Grantham, H. Badarinarayan, M. State, A. Products, H. A. Limited, F. Hills, F. Stir, and C. Growth, Fatigue Evaluation of Friction Stir Spot Welds in Magnesium Sheets heets, Magnes. Technol. 2010, p.267–271, (2010).

DOI: 10.1002/9781118859803.ch88

Google Scholar

[19] P. C. Lin, Z. M. Su, R. Y. He, and Z. L. Lin, Failure modes and fatigue life estimations of spot friction welds in cross-tension specimens of aluminum 6061-T6 sheets, Int. J. Fatigue, vol. 38, p.25–35, (2012).

DOI: 10.1016/j.ijfatigue.2011.11.003

Google Scholar

[20] H. T. Kang, Fatigue prediction of spot welded joints using equivalent structural stress, Mater. Des., vol. 28, no. 3, p.837–843, Jan. (2007).

DOI: 10.1016/j.matdes.2005.11.001

Google Scholar

[21] L. Xiao, L. Liu, D. L. Chen, S. Esmaeili, and Y. Zhou, Resistance spot weld fatigue behavior and dislocation substructures in two different heats of AZ31 magnesium alloy, Mater. Sci. Eng. A, vol. 529, no. 1, p.81–87, (2011).

DOI: 10.1016/j.msea.2011.08.064

Google Scholar

[22] D. A. Wang and C. H. Chen, Fatigue lives of friction stir spot welds in aluminum 6061-T6 sheets, J. Mater. Process. Technol., vol. 209, no. 1, p.367–375, (2009).

DOI: 10.1016/j.jmatprotec.2008.02.008

Google Scholar

[23] S. B. Behravesh, H. Jahed, and S. Lambert, Fatigue characterization and modeling of AZ31B magnesium alloy spot-welds, Int. J. Fatigue, vol. 64, p.1–13, (2014).

DOI: 10.1016/j.ijfatigue.2014.01.026

Google Scholar

[24] P. Lin, J. Pan, and T. Pan, Failure modes and fatigue life estimations of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets. Part 1: Welds made by a concave tool, Int. J. Fatigue, vol. 30, no. 1, p.74–89, Jan. (2008).

DOI: 10.1016/j.ijfatigue.2007.02.016

Google Scholar

[25] V. X. Tran, J. Pan, and T. Pan, Fatigue behavior of aluminum 5754-O and 6111-T4 spot friction welds in lap-shear specimens, Int. J. Fatigue, vol. 30, no. 12, p.2175–2190, (2008).

DOI: 10.1016/j.ijfatigue.2008.05.025

Google Scholar

[26] H. Lee, Fatigue life prediction of multi-spot-welded panel structures using an equivalent stress intensity factor, International Journal of Fatigue, vol. 26, no. 4. p.403–412, (2004).

DOI: 10.1016/j.ijfatigue.2003.07.001

Google Scholar

[27] V. X. Tran, J. Pan, and T. Pan, Fatigue behavior of spot friction welds in lap-shear and cross-tension specimens of dissimilar aluminum sheets, Int. J. Fatigue, vol. 32, no. 7, p.1022–1041, (2010).

DOI: 10.1016/j.ijfatigue.2009.11.009

Google Scholar

[28] M. E. M. El-Sayed, T. Stawiarski, and R. Frutiger, Fatigue analysis of spot-welded joints under variable amplitude load history, Eng. Fract. Mech., vol. 55, no. 3, p.363–369, (1996).

DOI: 10.1016/0013-7944(95)00235-9

Google Scholar

[29] X. Long, S. K. Khanna, and L. F. Allard, Effect of fatigue loading and residual stress on microscopic deformation mechanisms in a spot welded joint, Mater. Sci. Eng. A, vol. 454–455, no. 2007, p.398–406, Apr. (2007).

DOI: 10.1016/j.msea.2006.11.062

Google Scholar

[30] S. Lin, J. Pan, P. Wung, and J. Chiang, A fatigue crack growth model for spot welds under cyclic loading conditions, Int. J. Fatigue, vol. 28, no. 7, p.792–803, Jul. (2006).

DOI: 10.1016/j.ijfatigue.2005.08.003

Google Scholar

[31] W. Fricke, Fatigue analysis of welded joints: state of development, Mar. Struct., vol. 16, no. 3, p.185–200, May (2003).

Google Scholar

[32] H. Lee and N. Kim, Fatigue life prediction of multi-spot-welded panel structures using an equivalent stress intensity factor, vol. 26, no. 4. 2004, p.403–412.

DOI: 10.1016/j.ijfatigue.2003.07.001

Google Scholar

[33] H. T. Kang, P. Dong, and J. K. Hong, Fatigue analysis of spot welds using a mesh-insensitive structural stress approach, Int. J. Fatigue, vol. 29, no. 8, p.1546–1553, (2007).

DOI: 10.1016/j.ijfatigue.2006.10.025

Google Scholar

[34] J. F. Cooper and R. A. Smith, The measurement of fatigue cracks at spot-welds, Int. J. Fatigue, vol. 7, no. 3, p.137–140, (1985).

DOI: 10.1016/0142-1123(85)90023-4

Google Scholar

[35] R. W. Rathbun, D. K. Matlock, and J. G. Speer, Fatigue Behavior of Spot Welded High-Strength Sheet Steels, Weld. J., vol. 82, no. 8, p. 207S–218S, (2003).

Google Scholar

[36] J. M. Park and H. T. Kang, Prediction of Fatigue Life for Spot Welds using Back-Propagation Neural Networks, Mater. Des., vol. 28, no. 10, p.2577–2584, (2007).

DOI: 10.1016/j.matdes.2006.10.014

Google Scholar

[37] J. S. Jr, H. Watanabe, and J. Mitchell, Spot Weldability of Mn-Mo-Nb, VN and SAE 1008 Steels, Weld. J., p.217–224, (1977).

Google Scholar

[38] and J. C. B. J.M. SawHill, JR., Spot Weldability of High-Strength Sheet Steels, Weld. J., p.1980, (1980).

Google Scholar

[39] X. Sun, E. V. Stephens, and M. A. Khaleel, Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high strength steel spot welds under lap shear loading conditions, Eng. Fail. Anal., vol. 15, no. 4, p.356–367, (2008).

DOI: 10.1016/j.engfailanal.2007.01.018

Google Scholar

[40] J. H. Kim, Y. Cho, and Y. H. Jang, Estimation of the weldability of single-sided resistance spot welding, J. Manuf. Syst., vol. 32, no. 3, p.505–512, (2013).

DOI: 10.1016/j.jmsy.2013.04.007

Google Scholar

[41] D. K. Aidun and R. W. Bennett, Effect of resistance welding variables on the strength of spot welded 6061-T6 aluminum alloy, (1985).

Google Scholar

[42] A. M. Al-Mukhtar, Spot Welding Efficiency and It ' S Effect on Structural Strength of Gas Generator and Its Performance, Baghdad University, (2002).

Google Scholar

[43] R. Priya, V. Subramanya Sarma, and K. Prasad Rao, Effect of post weld heat treatment on the microstructure and tensile properties of dissimilar friction stir welded AA 2219 and AA 6061 alloys, Trans. Indian Inst. Met., vol. 62, no. 1, p.11–19, (2009).

DOI: 10.1007/s12666-009-0002-4

Google Scholar

[44] Y. C. Chen, D. Bakavos, A. Gholinia, and P. B. Prangnell, HAZ development and accelerated post-weld natural ageing in ultrasonic spot welding aluminium 6111-T4 automotive sheet, Acta Mater., vol. 60, no. 6–7, p.2816–2828, (2012).

DOI: 10.1016/j.actamat.2012.01.047

Google Scholar

[45] C. Gesnouin, A. Hazarabedian, P. Bruzzoni, J. Ovejero-García, P. Bilmes, and C. Llorente, Effect of post-weld heat treatment on the microstructure and hydrogen permeation of 13CrNiMo steels, Corros. Sci., vol. 46, no. 7, p.1633–1647, (2004).

DOI: 10.1016/j.corsci.2003.10.006

Google Scholar

[46] Y. C. Chen, H. J. Liu, and J. C. Feng, Effect of post-weld heat treatment on the mechanical properties of 2219-O friction stir welded joints, J. Mater. Sci., vol. 41, no. 1, p.297–299, (2006).

DOI: 10.1007/s10853-005-0640-9

Google Scholar

[47] Y. Yang, Z. Wang, H. Tan, J. Hong, Y. Jiang, L. Jiang, and J. Li, Effect of a brief post-weld heat treatment on the microstructure evolution and pitting corrosion of laser beam welded UNS S31803 duplex stainless steel, Corros. Sci., vol. 65, p.472–480, (2012).

DOI: 10.1016/j.corsci.2012.08.054

Google Scholar

[48] J. American, JOURNALS AMERICAN WELDING, Society.

Google Scholar

[49] D. Kianersi, A. Mostafaei, and A. A. Amadeh, Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: Phase transformations, mechanical properties and microstructure characterizations, Mater. Des., vol. 61, p.251–263, Sep. (2014).

DOI: 10.1016/j.matdes.2014.04.075

Google Scholar

[50] K. Guan, X. Xu, H. Xu, and Z. Wang, Effect of aging at 700°C on precipitation and toughness of AISI 321 and AISI 347 austenitic stainless steel welds, Nucl. Eng. Des., vol. 235, no. 23, p.2485–2494, Dec. (2005).

DOI: 10.1016/j.nucengdes.2005.06.006

Google Scholar

[51] A. INTERNATIONAL, Welding, brazing and soldering, vol. 6. ASM International, (1993).

Google Scholar

[52] and J. W. M. J.M. Sawhill, JR.H. Watanable, Spot Weldability of Mn Mo Cb, V-N and SAE 1008 Steels, (1977).

Google Scholar

[53] S. R. Sin, S. M. Yang, H. S. Yu, C. W. Kim, and H. Y. Kang, Fatigue Analysis of Multi-Lap Spot Welding of High Strength Steel by Quasi Static Tensile- Shear Test, Key Eng. Mater., vol. 345–346, p.251–254, (2007).

DOI: 10.4028/www.scientific.net/kem.345-346.251

Google Scholar

[54] H. Tohmyoh, T. Imaizumi, H. Hayashi, and M. Saka, Welding of Pt nanowires by Joule heating, Scr. Mater., vol. 57, no. 10, p.953–956, (2007).

DOI: 10.1016/j.scriptamat.2007.07.018

Google Scholar

[55] S. Agashe and H. Zhang, Selection of schedules based on heat balance in resistance spot welding, Weld. J., vol. 1, no. 2, p.179–183, (2003).

Google Scholar

[56] N. Kahraman, The influence of welding parameters on the joint strength of resistance spot-welded titanium sheets, Mater. Des., vol. 28, no. 2, p.420–427, Jan. (2007).

DOI: 10.1016/j.matdes.2005.09.010

Google Scholar

[57] S. Aslanlar, a. Ogur, U. Ozsarac, E. Ilhan, and Z. Demir, Effect of welding current on mechanical properties of galvanized chromided steel sheets in electrical resistance spot welding, Mater. Des., vol. 28, no. 1, p.2–7, Jan. (2007).

DOI: 10.1016/j.matdes.2005.06.022

Google Scholar

[58] D. R. Andraws, The importance of monitoring resistance welding parameters, vol. 54, no. April, p.1986, (1986).

Google Scholar

[59] P. K. Ray and B. B. Verma, A study on spot heating induced fatigue crack growth retardation, Fatigue Fract. Eng. Mater. Struct., vol. 28, no. 7, p.579–585, (2005).

DOI: 10.1111/j.1460-2695.2005.00901.x

Google Scholar

[60] D. W. Seo, Y. B. Jeon, and J. K. Lim, Effect of Electric Weld Current on Spatter Reduction in Spot Welding Process, Key Eng. Mater., vol. 261–263, p.1623–1628, (2004).

DOI: 10.4028/www.scientific.net/kem.261-263.1623

Google Scholar

[61] S. Aslanlar, Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding, (2008).

DOI: 10.1016/j.matdes.2007.09.004

Google Scholar

[62] X. Wan, Y. Wang, and P. Zhang, Modelling the effect of welding current on resistance spot welding of {DP600} steel, J. Mater. Process. Technol., vol. 214, no. 11, p.2723–2729, (2014).

DOI: 10.1016/j.jmatprotec.2014.06.009

Google Scholar

[63] Y. J. Chao, Failure mode of spot welds: interfacial versus pullout, Sci. Technol. Weld. Join., vol. 8, no. 2, p.133–137, (2003).

Google Scholar

[64] E. Bayraktar, D. Kaplan, and M. Grumbach, Application of impact tensile testing to spot welded sheets, J. Mater. Process. Technol., vol. 153–154, p.80–86, Nov. (2004).

DOI: 10.1016/j.jmatprotec.2004.04.020

Google Scholar

[65] A. W. Society, Welding. (1958).

Google Scholar

[66] B. E. Rossi, Welding Engineering. (1985).

Google Scholar

[67] H. Moshayedi and I. Sattari-Far, Numerical and experimental study of nugget size growth in resistance spot welding of austenitic stainless steels, J. Mater. Process. Technol., vol. 212, no. 2, p.347–354, Feb. (2012).

DOI: 10.1016/j.jmatprotec.2011.09.004

Google Scholar

[68] D. Ozyurek, Materials & Design An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel, J. Mater., (2007).

DOI: 10.1016/j.matdes.2007.03.008

Google Scholar

[69] M. Pouranvari, A. Abedi, P. Marashi, and M. Goodarzi, Effect of expulsion on peak load and energy absorption of low carbon steel resistance spot welds, Sci. Technol. Weld. Join., vol. 13, no. 1, p.39–43, Jan. (2008).

DOI: 10.1179/174329307x249342

Google Scholar

[70] K. S. Guan, X. D. Xu, Y. Y. Zhang, and Z. W. Wang, Cracks and precipitate phases in 321 stainless steel weld of flue gas pipe, Eng. Fail. Anal., vol. 12, no. 4, p.623–633, Aug. (2005).

DOI: 10.1016/j.engfailanal.2004.05.008

Google Scholar

[71] M. Pouranvari, H. R. Asgari, S. M. Mosavizadch, P. H. Marashi, and M. Goodarzi, Effect of weld nugget size on overload failure mode of resistance spot welds, Sci. Technol. Weld. Join., vol. 12, no. 3, p.217–225, (2007).

DOI: 10.1179/174329307x164409

Google Scholar

[72] G. Mukhopadhyay, S. Bhattacharya, and K. K. Ray, Strength assessment of spot-welded sheets of interstitial free steels, J. Mater. Process. Technol., vol. 209, no. 4, p.1995–2007, Feb. (2009).

DOI: 10.1016/j.jmatprotec.2008.04.065

Google Scholar

[73] M. M. Rahman, Fatigue Life Prediction of Spot-Welded Structures: A Finite Element Analysis Approach, Eur. J. Sci. Res., vol. 22, no. 3, p.444–456, (2008).

Google Scholar

[74] J. B. Shamsul, M. M. Hisyam, and T. Muhibbah, Study Of Spot Welding Of Austenitic Stainless Steel Type 304, J. Appl. Sci., vol. 3, no. 11, p.1494–1499, (2007).

Google Scholar

[75] A. Gean, S. a Westgate, J. C. Kucza, and J. C. Ehrstrom, Static and Fatigue Behavior of Spot-Welded 51 82-0 Aluminum Alloy Sheet, Weld. Journal- New York, vol. 78, no. March, p. 80s–86s, (1999).

Google Scholar

[76] J. Senkara and H. Zhang, Cracking in Spot Welding Aluminum Alloy AA5754, Weld. Reseach Suppl., no. July, p.194–201, (2000).

Google Scholar

[77] S. E. Mirsalehi and a. H. Kokabi, Fatigue life estimation of spot welds using a crack propagation-based method with consideration of residual stresses effect, Mater. Sci. Eng. A, vol. 527, no. 23, p.6359–6363, Sep. (2010).

DOI: 10.1016/j.msea.2010.06.070

Google Scholar

[78] A. M. Al-Mukhtar, H. Biermann, S. Henkel, P. Hübner, and S. Henkel, Comparison of the stress intensity factor of load-carrying cruciform welded joints with different geometries, J. Mater. Eng. Perform., vol. 19, no. 6, p.802–809, (2010).

DOI: 10.1007/s11665-009-9552-1

Google Scholar

[79] D. Özyürek, An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel, Mater. Des., vol. 29, no. 3, p.597–603, Jan. (2008).

DOI: 10.1016/j.matdes.2007.03.008

Google Scholar

[80] H. Mohrbacher, Reverse metallurgical engineering towards sustainable manufacturing of vehicles using Nb and Mo alloyed high performance steels, Adv. Manuf., vol. 1, no. 1, p.28–41, (2013).

DOI: 10.1007/s40436-013-0002-9

Google Scholar

[81] Cornell Fracture Group, FRANC2D Version 3. 2, 2010. [Online]. Available: http: /www. cfg. cornell. edu/software/franc2d_casca. htm. [Accessed: 07-Jul-2013].

Google Scholar

[82] and V. I. R. A. I. Pugachev, N. B. Demkin, Dimensions of Initial Contact in Spot Welding of Light Alloys, Welding Production ., Weld. Prod., no. 4, pp. p.13–15, (1968).

Google Scholar

[83] P. Marashi, M. Pouranvari, S. Amirabdollahian, A. Abedi, and M. Goodarzi, Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels, Mater. Sci. Eng. A, vol. 480, no. 1–2, p.175–180, (2008).

DOI: 10.1016/j.msea.2007.07.007

Google Scholar

[84] M. Kamaraj and V. M. Radhakrishnan, High temperature crack growth in austenitic weld metal, Eng. Fract. Mech., vol. 33, no. 5, p.801–811, Jan. (1989).

DOI: 10.1016/0013-7944(89)90077-5

Google Scholar

[85] Q. D. and A. M. Al-Mukhtar, Static Strength Behavior of Austenitic Stainless Steel Sheet, J. Eng. Coll., vol. Vol. 10, no. No. 2, (2004).

Google Scholar

[86] D. Kim, D. Blake, S. J. Ryu, and B. S. Lim, A Study on Fatigue Strength Improvement of Aluminum Alloy Resistant Spot Welds by Cold Working, Mater. Sci. Forum, vol. 539–543, p.3961–3966, (2007).

DOI: 10.4028/www.scientific.net/msf.539-543.3961

Google Scholar

[87] A. M. Al-Mukhtar, H. Biermann, P. Hübner, and S. Henkel, Determination of Some Parameters for Fatigue Life in Welded Joints Using Fracture Mechanics Method, J. Mater. Eng. Perform., vol. 19, no. 9, p.1225–1234, Mar. (2010).

DOI: 10.1007/s11665-010-9621-5

Google Scholar

[88] J. A. Khan, L. Xu, Y. -J. Chao, and K. Broach, Numerical simulation of resistance spot welding process, Numer. Heat Transf. Part A Appl., vol. 37, no. 5, p.425–446, (2000).

DOI: 10.1080/104077800274145

Google Scholar

[89] P. H. Thornton, A. R. Krause, and R. G. Davies, Aluminum spot weld, Weld. Journal-Including Weld. Res. Suppl., vol. 75, no. 3, p. 101s, (1996).

Google Scholar

[90] J.F. Lancaster, The Metallurgy of Welding, Brazing and Soldering, London, George Alden and Unwin LTD, 1970., p.1970, (1970).

Google Scholar

[91] and V. M. R. M. Kamaraj, High Temperature Crack Growth in Austenitic Weld, vol. 33, no. 5, p.1989, (1989).

Google Scholar

[92] A. M. Al-Mukhtar, Static Strength Behavior of Austenitic Stainless Steel Sheet, Journal of Engineering College, Vol. 10, No. 2, June 2004, Baghdad University., J. Eng. Coll., vol. 10, no. 2, p.2004, (2004).

Google Scholar

[93] A. M. Al-Mukhtar, Investigation of the thickness effect on the fatigue strength calculation, J. Fail. Anal. Prev., p.23, (2013).

Google Scholar

[94] C. Ma, D. L. Chen, S. D. Bhole, G. Boudreau, A. Lee, and E. Biro, Microstructure and fracture characteristics of spot-welded {DP600} steel, Mater. Sci. Eng. A, vol. 485, no. 1–2, p.334–346, (2008).

DOI: 10.1016/j.msea.2007.08.010

Google Scholar