p.1
p.7
p.14
p.31
p.58
p.66
p.77
p.89
p.101
Review of Resistance Spot Welding Sheets: Processes and Failure Mode
Abstract:
The engineering parts joining by the spot welding require acceptable properties to survive the loading conditions XE "temperature". Several studies show that the welding variables have an effect on the properties of spot nugget XE "nugget" and on the future cracking. This review summarizes the resistance spot welding process (RSW). It introduces the basic spot welding principles, experiments XE"experiments" , limitation and defects XE "defects". The new concepts and awareness were presented. The results from the series of scientific works and literature are discussed. The metal’s weldability, XE "spotweldability" strength, XE"strength" and fracture are the main topics in several structural analysis. The welding variables effect on the mechanical properties and performance XE "mechanicalproperties" of the structures is the key analysis. In general, the increasing of the heat input by adjusting the current, time, and pressure producing higher weld area in turn enhance the toughness. However, by increasing the weld area, the defects and cracking tend to appear. Hence, a desired weld size with the mechanical properties is required. The nugget fracture mode is changing from plug or button tearing to shear failure mode depending on the weld properties. The crack grows either from the internal defects or around the nugget.
Info:
Periodical:
Pages:
31-57
Citation:
Online since:
June 2016
Authors:
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] I. S. Hwang, M. J. Kang, and D. C. Kim, Expulsion reduction in resistance spot welding by controlling of welding current waveform, in Procedia Engineering, 2011, vol. 10, p.2775–2781.
[2] A. M. Al-Mukhtar and Q. Doos, The Spot Weldability of Carbon Steel Sheet, Adv. Mater. Sci. Eng., vol. 2013, p.1–6, (2013).
DOI: 10.1155/2013/146896
[3] A. Al-Mukhtar and Q. Doos, Cracking Phenomenon in Spot Welded Joints of Austenitic Stainless Steel, Mater. Sci. Appl., vol. 4, no. October, p.656–662, (2013).
[4] B. Lang, D. Q. Sun, Z. Z. Xuan, and X. F. Qin, Hot Cracking of Resistance Spot Welded Magnesium Alloy, ISIJ International, vol. 48, no. 1. p.77–82, (2008).
[5] a. M. Pereira, J. M. Ferreira, a. Loureiro, J. D. M. Costa, and P. J. Bártolo, Effect of process parameters on the strength of resistance spot welds in 6082-T6 aluminium alloy, Mater. Des., vol. 31, no. 5, p.2454–2463, May (2010).
[6] V. Acoff, R. Thompson, R. Griffin, and B. Radhakrishnan, Effect of heat treatment on microstructure and microhardness of spot welds in Ti-26A1-11Nb, Mater. Sci. Eng. A, vol. 152, no. 1–2, p.304–309, May (1992).
[7] H. Aydin, A. Bayram, and I. Durgun, The effect of post-weld heat treatment on the mechanical properties of 2024-T4 friction stir-welded joints, Mater. Des., vol. 31, no. 5, p.2568–2577, (2010).
[8] T. Kim, Y. S. Lee, J. Lee, and S. H. Rhee, A Study of Nondestructive Weld Quality Inspection and Estimation during Resistance Spot Welding, Key Eng. Mater., vol. 270–273, p.2338–2344, (2004).
[9] American Welding Society. (1985).
[10] T. A. Welder, Welding Aluminum Wire feeder Technology The American Welder We ' ve Got, Quality, no. April, (2006).
[11] P. -C. Wang and K. W. Ewing, Fracture Mechanics Analysis of Fatigue Resistance of Spot Welded Coach-Peel Joints, Fatigue Fract. Eng. Mater. Struct., vol. 14, no. 9, p.915–930, Nov. (1991).
[12] T. Snow, Articles - How to Improve Spot-Welding Performance | Metalforming Magazine, " 2014. [Online]. Available: http: /www. metalformingmagazine. com/magazine/article. asp, aid=9505. [Accessed: 15-Apr-2016].
[13] I. O. Santos, W. Zhang, V. M. Gonçalves, N. Bay, and P. a. F. Martins, Weld bonding of stainless steel, Int. J. Mach. Tools Manuf., vol. 44, no. 14, p.1431–1439, Nov. (2004).
[14] T. Triyono, Y. Purwaningrum, and I. Chamid, Critical Nugget Diameter of Resistance Spot Welded Stiffened Thin Plate Structure, Mod. Appl. Sci., vol. 7, no. 7, p.17–22, (2013).
DOI: 10.5539/mas.v7n7p17
[15] W. Liu, C. Sun, X. Xu, Y. Zuo, and J. Lin, The influences of nugget diameter on the mechanical properties and the failure mode of resistance spot-welded metastable austenitic stainless steel, Mater. Des., vol. 33, no. 1, p.292–299, Jan. (2012).
[16] J. H. Song, H. G. Noh, S. M. Akira, H. S. Yu, H. Y. Kang, and S. M. Yang, Analysis of effective nugget size by infrared thermography in spot weldment, Int. J. Automot. Technol., vol. 5, no. 1, p.55–59, (2004).
[17] J. B. Jordon, M. F. Horstemeyer, S. R. Daniewicz, H. Badarinarayan, and J. Grantham, Fatigue Characterization and Modeling of Friction Stir Spot Welds in Magnesium AZ31 Alloy, Journal of Engineering Materials and Technology, vol. 132, no. 4. p.041008, (2010).
DOI: 10.1115/1.4002330
[18] J. B. Jordon, M. F. Horstemeyer, J. Grantham, H. Badarinarayan, M. State, A. Products, H. A. Limited, F. Hills, F. Stir, and C. Growth, Fatigue Evaluation of Friction Stir Spot Welds in Magnesium Sheets heets, Magnes. Technol. 2010, p.267–271, (2010).
[19] P. C. Lin, Z. M. Su, R. Y. He, and Z. L. Lin, Failure modes and fatigue life estimations of spot friction welds in cross-tension specimens of aluminum 6061-T6 sheets, Int. J. Fatigue, vol. 38, p.25–35, (2012).
[20] H. T. Kang, Fatigue prediction of spot welded joints using equivalent structural stress, Mater. Des., vol. 28, no. 3, p.837–843, Jan. (2007).
[21] L. Xiao, L. Liu, D. L. Chen, S. Esmaeili, and Y. Zhou, Resistance spot weld fatigue behavior and dislocation substructures in two different heats of AZ31 magnesium alloy, Mater. Sci. Eng. A, vol. 529, no. 1, p.81–87, (2011).
[22] D. A. Wang and C. H. Chen, Fatigue lives of friction stir spot welds in aluminum 6061-T6 sheets, J. Mater. Process. Technol., vol. 209, no. 1, p.367–375, (2009).
[23] S. B. Behravesh, H. Jahed, and S. Lambert, Fatigue characterization and modeling of AZ31B magnesium alloy spot-welds, Int. J. Fatigue, vol. 64, p.1–13, (2014).
[24] P. Lin, J. Pan, and T. Pan, Failure modes and fatigue life estimations of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets. Part 1: Welds made by a concave tool, Int. J. Fatigue, vol. 30, no. 1, p.74–89, Jan. (2008).
[25] V. X. Tran, J. Pan, and T. Pan, Fatigue behavior of aluminum 5754-O and 6111-T4 spot friction welds in lap-shear specimens, Int. J. Fatigue, vol. 30, no. 12, p.2175–2190, (2008).
[26] H. Lee, Fatigue life prediction of multi-spot-welded panel structures using an equivalent stress intensity factor, International Journal of Fatigue, vol. 26, no. 4. p.403–412, (2004).
[27] V. X. Tran, J. Pan, and T. Pan, Fatigue behavior of spot friction welds in lap-shear and cross-tension specimens of dissimilar aluminum sheets, Int. J. Fatigue, vol. 32, no. 7, p.1022–1041, (2010).
[28] M. E. M. El-Sayed, T. Stawiarski, and R. Frutiger, Fatigue analysis of spot-welded joints under variable amplitude load history, Eng. Fract. Mech., vol. 55, no. 3, p.363–369, (1996).
[29] X. Long, S. K. Khanna, and L. F. Allard, Effect of fatigue loading and residual stress on microscopic deformation mechanisms in a spot welded joint, Mater. Sci. Eng. A, vol. 454–455, no. 2007, p.398–406, Apr. (2007).
[30] S. Lin, J. Pan, P. Wung, and J. Chiang, A fatigue crack growth model for spot welds under cyclic loading conditions, Int. J. Fatigue, vol. 28, no. 7, p.792–803, Jul. (2006).
[31] W. Fricke, Fatigue analysis of welded joints: state of development, Mar. Struct., vol. 16, no. 3, p.185–200, May (2003).
[32] H. Lee and N. Kim, Fatigue life prediction of multi-spot-welded panel structures using an equivalent stress intensity factor, vol. 26, no. 4. 2004, p.403–412.
[33] H. T. Kang, P. Dong, and J. K. Hong, Fatigue analysis of spot welds using a mesh-insensitive structural stress approach, Int. J. Fatigue, vol. 29, no. 8, p.1546–1553, (2007).
[34] J. F. Cooper and R. A. Smith, The measurement of fatigue cracks at spot-welds, Int. J. Fatigue, vol. 7, no. 3, p.137–140, (1985).
[35] R. W. Rathbun, D. K. Matlock, and J. G. Speer, Fatigue Behavior of Spot Welded High-Strength Sheet Steels, Weld. J., vol. 82, no. 8, p. 207S–218S, (2003).
[36] J. M. Park and H. T. Kang, Prediction of Fatigue Life for Spot Welds using Back-Propagation Neural Networks, Mater. Des., vol. 28, no. 10, p.2577–2584, (2007).
[37] J. S. Jr, H. Watanabe, and J. Mitchell, Spot Weldability of Mn-Mo-Nb, VN and SAE 1008 Steels, Weld. J., p.217–224, (1977).
[38] and J. C. B. J.M. SawHill, JR., Spot Weldability of High-Strength Sheet Steels, Weld. J., p.1980, (1980).
[39] X. Sun, E. V. Stephens, and M. A. Khaleel, Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high strength steel spot welds under lap shear loading conditions, Eng. Fail. Anal., vol. 15, no. 4, p.356–367, (2008).
[40] J. H. Kim, Y. Cho, and Y. H. Jang, Estimation of the weldability of single-sided resistance spot welding, J. Manuf. Syst., vol. 32, no. 3, p.505–512, (2013).
[41] D. K. Aidun and R. W. Bennett, Effect of resistance welding variables on the strength of spot welded 6061-T6 aluminum alloy, (1985).
[42] A. M. Al-Mukhtar, Spot Welding Efficiency and It ' S Effect on Structural Strength of Gas Generator and Its Performance, Baghdad University, (2002).
[43] R. Priya, V. Subramanya Sarma, and K. Prasad Rao, Effect of post weld heat treatment on the microstructure and tensile properties of dissimilar friction stir welded AA 2219 and AA 6061 alloys, Trans. Indian Inst. Met., vol. 62, no. 1, p.11–19, (2009).
[44] Y. C. Chen, D. Bakavos, A. Gholinia, and P. B. Prangnell, HAZ development and accelerated post-weld natural ageing in ultrasonic spot welding aluminium 6111-T4 automotive sheet, Acta Mater., vol. 60, no. 6–7, p.2816–2828, (2012).
[45] C. Gesnouin, A. Hazarabedian, P. Bruzzoni, J. Ovejero-García, P. Bilmes, and C. Llorente, Effect of post-weld heat treatment on the microstructure and hydrogen permeation of 13CrNiMo steels, Corros. Sci., vol. 46, no. 7, p.1633–1647, (2004).
[46] Y. C. Chen, H. J. Liu, and J. C. Feng, Effect of post-weld heat treatment on the mechanical properties of 2219-O friction stir welded joints, J. Mater. Sci., vol. 41, no. 1, p.297–299, (2006).
[47] Y. Yang, Z. Wang, H. Tan, J. Hong, Y. Jiang, L. Jiang, and J. Li, Effect of a brief post-weld heat treatment on the microstructure evolution and pitting corrosion of laser beam welded UNS S31803 duplex stainless steel, Corros. Sci., vol. 65, p.472–480, (2012).
[48] J. American, JOURNALS AMERICAN WELDING, Society.
[49] D. Kianersi, A. Mostafaei, and A. A. Amadeh, Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: Phase transformations, mechanical properties and microstructure characterizations, Mater. Des., vol. 61, p.251–263, Sep. (2014).
[50] K. Guan, X. Xu, H. Xu, and Z. Wang, Effect of aging at 700°C on precipitation and toughness of AISI 321 and AISI 347 austenitic stainless steel welds, Nucl. Eng. Des., vol. 235, no. 23, p.2485–2494, Dec. (2005).
[51] A. INTERNATIONAL, Welding, brazing and soldering, vol. 6. ASM International, (1993).
[52] and J. W. M. J.M. Sawhill, JR.H. Watanable, Spot Weldability of Mn Mo Cb, V-N and SAE 1008 Steels, (1977).
[53] S. R. Sin, S. M. Yang, H. S. Yu, C. W. Kim, and H. Y. Kang, Fatigue Analysis of Multi-Lap Spot Welding of High Strength Steel by Quasi Static Tensile- Shear Test, Key Eng. Mater., vol. 345–346, p.251–254, (2007).
[54] H. Tohmyoh, T. Imaizumi, H. Hayashi, and M. Saka, Welding of Pt nanowires by Joule heating, Scr. Mater., vol. 57, no. 10, p.953–956, (2007).
[55] S. Agashe and H. Zhang, Selection of schedules based on heat balance in resistance spot welding, Weld. J., vol. 1, no. 2, p.179–183, (2003).
[56] N. Kahraman, The influence of welding parameters on the joint strength of resistance spot-welded titanium sheets, Mater. Des., vol. 28, no. 2, p.420–427, Jan. (2007).
[57] S. Aslanlar, a. Ogur, U. Ozsarac, E. Ilhan, and Z. Demir, Effect of welding current on mechanical properties of galvanized chromided steel sheets in electrical resistance spot welding, Mater. Des., vol. 28, no. 1, p.2–7, Jan. (2007).
[58] D. R. Andraws, The importance of monitoring resistance welding parameters, vol. 54, no. April, p.1986, (1986).
[59] P. K. Ray and B. B. Verma, A study on spot heating induced fatigue crack growth retardation, Fatigue Fract. Eng. Mater. Struct., vol. 28, no. 7, p.579–585, (2005).
[60] D. W. Seo, Y. B. Jeon, and J. K. Lim, Effect of Electric Weld Current on Spatter Reduction in Spot Welding Process, Key Eng. Mater., vol. 261–263, p.1623–1628, (2004).
[61] S. Aslanlar, Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding, (2008).
[62] X. Wan, Y. Wang, and P. Zhang, Modelling the effect of welding current on resistance spot welding of {DP600} steel, J. Mater. Process. Technol., vol. 214, no. 11, p.2723–2729, (2014).
[63] Y. J. Chao, Failure mode of spot welds: interfacial versus pullout, Sci. Technol. Weld. Join., vol. 8, no. 2, p.133–137, (2003).
[64] E. Bayraktar, D. Kaplan, and M. Grumbach, Application of impact tensile testing to spot welded sheets, J. Mater. Process. Technol., vol. 153–154, p.80–86, Nov. (2004).
[65] A. W. Society, Welding. (1958).
[66] B. E. Rossi, Welding Engineering. (1985).
[67] H. Moshayedi and I. Sattari-Far, Numerical and experimental study of nugget size growth in resistance spot welding of austenitic stainless steels, J. Mater. Process. Technol., vol. 212, no. 2, p.347–354, Feb. (2012).
[68] D. Ozyurek, Materials & Design An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel, J. Mater., (2007).
[69] M. Pouranvari, A. Abedi, P. Marashi, and M. Goodarzi, Effect of expulsion on peak load and energy absorption of low carbon steel resistance spot welds, Sci. Technol. Weld. Join., vol. 13, no. 1, p.39–43, Jan. (2008).
[70] K. S. Guan, X. D. Xu, Y. Y. Zhang, and Z. W. Wang, Cracks and precipitate phases in 321 stainless steel weld of flue gas pipe, Eng. Fail. Anal., vol. 12, no. 4, p.623–633, Aug. (2005).
[71] M. Pouranvari, H. R. Asgari, S. M. Mosavizadch, P. H. Marashi, and M. Goodarzi, Effect of weld nugget size on overload failure mode of resistance spot welds, Sci. Technol. Weld. Join., vol. 12, no. 3, p.217–225, (2007).
[72] G. Mukhopadhyay, S. Bhattacharya, and K. K. Ray, Strength assessment of spot-welded sheets of interstitial free steels, J. Mater. Process. Technol., vol. 209, no. 4, p.1995–2007, Feb. (2009).
[73] M. M. Rahman, Fatigue Life Prediction of Spot-Welded Structures: A Finite Element Analysis Approach, Eur. J. Sci. Res., vol. 22, no. 3, p.444–456, (2008).
[74] J. B. Shamsul, M. M. Hisyam, and T. Muhibbah, Study Of Spot Welding Of Austenitic Stainless Steel Type 304, J. Appl. Sci., vol. 3, no. 11, p.1494–1499, (2007).
[75] A. Gean, S. a Westgate, J. C. Kucza, and J. C. Ehrstrom, Static and Fatigue Behavior of Spot-Welded 51 82-0 Aluminum Alloy Sheet, Weld. Journal- New York, vol. 78, no. March, p. 80s–86s, (1999).
[76] J. Senkara and H. Zhang, Cracking in Spot Welding Aluminum Alloy AA5754, Weld. Reseach Suppl., no. July, p.194–201, (2000).
[77] S. E. Mirsalehi and a. H. Kokabi, Fatigue life estimation of spot welds using a crack propagation-based method with consideration of residual stresses effect, Mater. Sci. Eng. A, vol. 527, no. 23, p.6359–6363, Sep. (2010).
[78] A. M. Al-Mukhtar, H. Biermann, S. Henkel, P. Hübner, and S. Henkel, Comparison of the stress intensity factor of load-carrying cruciform welded joints with different geometries, J. Mater. Eng. Perform., vol. 19, no. 6, p.802–809, (2010).
[79] D. Özyürek, An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel, Mater. Des., vol. 29, no. 3, p.597–603, Jan. (2008).
[80] H. Mohrbacher, Reverse metallurgical engineering towards sustainable manufacturing of vehicles using Nb and Mo alloyed high performance steels, Adv. Manuf., vol. 1, no. 1, p.28–41, (2013).
[81] Cornell Fracture Group, FRANC2D Version 3. 2, 2010. [Online]. Available: http: /www. cfg. cornell. edu/software/franc2d_casca. htm. [Accessed: 07-Jul-2013].
[82] and V. I. R. A. I. Pugachev, N. B. Demkin, Dimensions of Initial Contact in Spot Welding of Light Alloys, Welding Production ., Weld. Prod., no. 4, pp. p.13–15, (1968).
[83] P. Marashi, M. Pouranvari, S. Amirabdollahian, A. Abedi, and M. Goodarzi, Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels, Mater. Sci. Eng. A, vol. 480, no. 1–2, p.175–180, (2008).
[84] M. Kamaraj and V. M. Radhakrishnan, High temperature crack growth in austenitic weld metal, Eng. Fract. Mech., vol. 33, no. 5, p.801–811, Jan. (1989).
[85] Q. D. and A. M. Al-Mukhtar, Static Strength Behavior of Austenitic Stainless Steel Sheet, J. Eng. Coll., vol. Vol. 10, no. No. 2, (2004).
[86] D. Kim, D. Blake, S. J. Ryu, and B. S. Lim, A Study on Fatigue Strength Improvement of Aluminum Alloy Resistant Spot Welds by Cold Working, Mater. Sci. Forum, vol. 539–543, p.3961–3966, (2007).
[87] A. M. Al-Mukhtar, H. Biermann, P. Hübner, and S. Henkel, Determination of Some Parameters for Fatigue Life in Welded Joints Using Fracture Mechanics Method, J. Mater. Eng. Perform., vol. 19, no. 9, p.1225–1234, Mar. (2010).
[88] J. A. Khan, L. Xu, Y. -J. Chao, and K. Broach, Numerical simulation of resistance spot welding process, Numer. Heat Transf. Part A Appl., vol. 37, no. 5, p.425–446, (2000).
[89] P. H. Thornton, A. R. Krause, and R. G. Davies, Aluminum spot weld, Weld. Journal-Including Weld. Res. Suppl., vol. 75, no. 3, p. 101s, (1996).
[90] J.F. Lancaster, The Metallurgy of Welding, Brazing and Soldering, London, George Alden and Unwin LTD, 1970., p.1970, (1970).
[91] and V. M. R. M. Kamaraj, High Temperature Crack Growth in Austenitic Weld, vol. 33, no. 5, p.1989, (1989).
[92] A. M. Al-Mukhtar, Static Strength Behavior of Austenitic Stainless Steel Sheet, Journal of Engineering College, Vol. 10, No. 2, June 2004, Baghdad University., J. Eng. Coll., vol. 10, no. 2, p.2004, (2004).
[93] A. M. Al-Mukhtar, Investigation of the thickness effect on the fatigue strength calculation, J. Fail. Anal. Prev., p.23, (2013).
[94] C. Ma, D. L. Chen, S. D. Bhole, G. Boudreau, A. Lee, and E. Biro, Microstructure and fracture characteristics of spot-welded {DP600} steel, Mater. Sci. Eng. A, vol. 485, no. 1–2, p.334–346, (2008).