Adaptive Control for Trajectory Tracking of an Unmanned Aerial Vehicle

Article Preview

Abstract:

In this paper, an unmanned aerial vehicle (UAV) with fixed-wing in normal condition flight, and fixed height, is considered and along with this process, kinematics model of UAV, assumed to have parametric uncertainty. In this situation the target of designing of proper controller family, based on switching logic, is to control the speed and roll angle of fixed-wing unmanned aerial vehicle in order to track desired path with minimum error. The desired path will be generated by trajectory maker block. The results of simulation on a fixed-wing UAV are presented to show the efficiency of the method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-110

Citation:

Online since:

June 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. G. Thomasson, Modelling, Simulation and Flight Test Experience in the Development of Unstable Robotic Aircraft, Aeronautical Journal 104 (2000) 359-364.

DOI: 10.1017/s0001924000063995

Google Scholar

[2] A. Brezoescu, T. Espinoza, P. Castillo, R. Lozano, Adaptive trajectory following for a fixed-wing UAV in presence of crosswind, J. Intelligent & Robotic Systems 69 (2013) 257-271.

DOI: 10.1007/s10846-012-9756-8

Google Scholar

[3] Ren, Wei, and Ella Atkins. Nonlinear trajectory tracking for fixed wing UAVs via backstepping and parameter adaptation. Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. (2005).

DOI: 10.2514/6.2005-6196

Google Scholar

[4] Beard, R., D. Kingston, M. Quigley, D. Snyder, R. Christiansen, W. Johnson, T. McLain and M. Goodrich, Autonomous vehicle technologies for small fixed wing UAVs, AIAA Journal of Aerospace Computing, Information, and Communication 2. 1 (2005).

DOI: 10.2514/1.8371

Google Scholar

[5] Salazar, Sergio, Ivan Gonzalez-Hernandez, Ricardo Lopez, and Rogelio Lozan, Simulation and robust trajectory-tracking for a Quadrotor UAV. Unmanned Aircraft Systems (ICUAS), 2014 International Conference on. IEEE, (2014).

DOI: 10.1109/icuas.2014.6842371

Google Scholar

[6] Johnson, Eric N., and Suresh K. Kannan, Adaptive flight control for an autonomous unmanned helicopter. AIAA Guidance, Navigation and Control Conference. Vol. 11. Monterey, CA: AIAA, (2002).

DOI: 10.2514/6.2002-4439

Google Scholar

[7] Sugeno, M., I. Hirano, S. Nakamura and S. Kotsu, Development of an intelligent unmanned helicopter, Proceeding of IEEE Int. Fuzzy Syst. Conference 5 (1995) 33–34.

DOI: 10.1109/fuzzy.1995.410029

Google Scholar

[8] Salman, Shaaban A., G. Sreenatha, and Y. C. Jin, Indirect adaptive fuzzy control of unmanned aerial vehicle, presentado al 17th IFAC World Congress (IFAC'08), Seoul, Korea. (2008).

DOI: 10.3182/20080706-5-kr-1001.02241

Google Scholar

[9] C. Silvestre, A. Pascoal and I. Kaminer, On the design of gain-scheduled trajectory tracking controllers, International Journal of Robust and Nonlinear Control 12. 9 (2002) 797-839.

DOI: 10.1002/rnc.705

Google Scholar

[10] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cli's, (1991).

Google Scholar

[11] H. Khalil, Nonlinear Systems, Macmillan, New York, (1992).

Google Scholar

[12] P. V. Kokotovic, The joy of Feedback: Nonlinear and Adaptive, IEEE Control Systems 12. 3, (1992) 7-17.

Google Scholar

[13] M. Krstic, I. Kanellakopoulos and P. V. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, New York, (1995).

Google Scholar

[14] J.P. Hespanha, D. Liberzon, A.S. Morse, Overcoming the limitations of adaptive control by means of logic-based switching, Systems & Control Letters 49 (2003) 49 – 65.

DOI: 10.1016/s0167-6911(02)00342-0

Google Scholar

[15] A.S. Morse, Supervisory control of families of linear set-point controllers, Part 1: exact matching, IEEE Trans. Automat. Control 41 (1996) 1413–1431.

DOI: 10.1109/9.539424

Google Scholar

[16] K.S. Narendra, J. Balakrishnan, Adaptive control using multiple models, IEEE Trans. Automat. Control 42 (1997) 171–187.

DOI: 10.1109/9.554398

Google Scholar

[17] M. Fu, B.R. Barmish, Adaptive stabilization of linear systems via switching control, IEEE Trans. Automat. Control 31 (1986) 1097–1103.

DOI: 10.1109/tac.1986.1104187

Google Scholar

[18] E.B. Kosmatopoulos, P. Ioannou, A switching‏ adaptive controller for feedback linearizable systems, IEEE Trans. Automat. Control 44 (1999) 742–750.

DOI: 10.1109/9.754811

Google Scholar

[19] A.S. Morse, Supervisory control of families of linear set-point controllers Part 2: robustness, IEEE Trans. Automat. Control 42 (1997) 1500–1515.

DOI: 10.1109/9.649687

Google Scholar

[20] J.P. Hespanha, D. Liberzon, A.S. Morse, B.D.O. Anderson, T.S. Brinsmead, F. deBruyne, Multiple model adaptive control Part 2: switching, Internat, J. Robust Nonlinear Control 11, (2001) 479–496.

DOI: 10.1002/rnc.594

Google Scholar

[21] J.P. Hespanha, D. Liberzon, A.S. Morse, Logic-based switching control of a nonholonomic system with parametric modeling uncertainty, Systems Control Lett. 38 (1999) 167–177.

DOI: 10.1016/s0167-6911(99)00062-6

Google Scholar

[22] Liberzon, Daniel, and João P. Hespanha, Hierarchical hysteresis switching, Decision and Control, 2000. Proceedings of the 39th IEEE Conference on. Vol. 1. IEEE, (2000).

DOI: 10.1109/cdc.2000.912812

Google Scholar

[23] F.M. Pait, F. Kassab Jr., On a class of switched, robustly stable, adaptive systems, Internat. J. Adaptive Control Signal Process 15 (2001) 213–238.

DOI: 10.1002/acs.665

Google Scholar

[24] Gómez-Gutiérrez, David, Sergej Čelikovský, Antonio Ramírez-Treviño, and Bernardino Castillo-Toledo, On the observer design problem for continuous-time switched linear systems with unknown switchings. J. the Franklin Institute 352. 4 (2015).

DOI: 10.1016/j.jfranklin.2015.01.036

Google Scholar