[1]
S. Buchini, C.J. Leumann, Recent improvements in antigene technology, Curr. Opin. Chem. Biol. 7 (2003) 717-726.
Google Scholar
[2]
D.A. Geselowitz, R.D. Neumann, Quantitation of triple-helix formation using a photo-crosslinkable aryl azide/biotin/oligonucleotide conjugate, Bioconjugate Chem. 6 (1995) 502-506.
DOI: 10.1021/bc00034a021
Google Scholar
[3]
B.D. Perkins, T.G. Wensel, K.M. Vasquez, J.H. Wilson, Psoralen photo-cross-linking by triplex-forming oligonucleotides at multiple sites in the human rhodopsin gene, Biochemistry, 38 (1999) 12850-12859.
DOI: 10.1021/bi9902743
Google Scholar
[4]
K. Fujimoto, H. Yoshinaga, Y. Yoshio, T. Sakamoto, Quick and reversible photocrosslinking reaction of 3-cyanovinylcarbazole nucleoside in a DNA triplex, Org. Biomol. Chem. 11 (2013) 5065-5068.
DOI: 10.1039/c3ob40915e
Google Scholar
[5]
G. Dorman, G.D. Prestwich, Benzophenone photophores in biochemistry, Biochemistry, 33 (1994) 5661–5673.
DOI: 10.1021/bi00185a001
Google Scholar
[6]
J. Jakubovska, D. Tauraitė, R. Meškys, A versatile method for the UVA-induced cross-linking of acetophenone-or benzophenone-functionalized DNA, Scientific Rep. 8 (2018) 16484.
DOI: 10.1038/s41598-018-34892-9
Google Scholar
[7]
T. Bach, Stereoselective intermolecular [2 + 2]-photocycloaddition reactions and their application in synthesis, Synthesis (1998) 683-703.
DOI: 10.1055/s-1998-2054
Google Scholar
[8]
H.S. Lee, R.D. Dimla, P.G. Schultz, Protein–DNA photo-crosslinking with a genetically encoded benzophenone-containing amino acid, Bioorg. Med. Chem. Lett. 19 (2009) 5222-5224.
DOI: 10.1016/j.bmcl.2009.07.011
Google Scholar
[9]
L. Zhang, A. Peritz, E. Meggers, A simple glycol nucleic acid, J. Am. Chem. Soc. 127 (2005) 4174-4175.
DOI: 10.1021/ja042564z
Google Scholar
[10]
M.K. Schlegel, A.E. Peritz, K. Kittigowittana, L. Zhang, E. Meggers, Duplex formation of the simplified nucleic acid GNA, ChemBioChem 8 (2007) 927-932.
DOI: 10.1002/cbic.200600435
Google Scholar
[11]
E. Meggers, L. Zhang, Synthesis and properties of the simplified nucleic acid glycol nucleic acid, Acc. Chem. Res. 43 (2010) 1092-1102.
DOI: 10.1021/ar900292q
Google Scholar
[12]
H. Zhou, X. Ma, J. Wang, L. Zhang, Pyrene acetylide nucleotides in GNA: probing duplex formation and sensing of copper(II) ions, Org. Biomol. Chem., 7 (2009) 2297-2302.
DOI: 10.1039/b900167k
Google Scholar
[13]
M.K. Schlegel, L. Zhang, N. Paganoa, E. Meggers, Metal-mediated base pairing within the simplified nucleic acid GNA, Org. Biomol. Chem., 7 (2009) 476-482.
DOI: 10.1039/b816142a
Google Scholar
[14]
K. Osowska, T. Liz, S. Szafert, Protection/deprotection-free syntheses and structural analysis of (keto-aryl)diynes, Eur. J. Org. Chem., 27 (2008) 4598-4606.
DOI: 10.1002/ejoc.200800350
Google Scholar
[15]
K. Nakatani, T. Yoshida, I. Saito, Photochemistry of benzophenone immobilized in a major groove of DNA: Formation of thermally reversible interstrand cross-link, J. Am. Chem. Soc. 124 (2002) 2118-2119.
DOI: 10.1021/ja017611r
Google Scholar
[16]
S. Takehira, Y. Masui, M. Onaka, The Mukaiyama aldol reactions for congested ketones catalyzed by solid acid of tin(IV) ion-exchanged montmorillonite, Chem. Lett, 43 (2014) 498-500.
DOI: 10.1246/cl.131095
Google Scholar
[17]
V. Jeso, C. Aquino, X. Cheng, H. Mizoguchi, M. Nakashige, G. C. Micalizio, Synthesis of Angularly Substituted Trans-Fused Hydroindanes by Convergent Coupling of Acyclic Precursors, J. Am. Chem. Soc. 136 (2014) 8209-8212.
DOI: 10.1021/ja504374j
Google Scholar
[18]
M. Li, Y. Li, B. Zhao, F. Liang, L.-Y. Jin, Facile and efficient synthesis of 1-haloalkynes via DBU-mediated reaction of terminal alkynes and N-haloimides under mild conditions, RSC Adv. 4 (2014) 30046-30049.
DOI: 10.1039/c4ra04736b
Google Scholar
[19]
N. Gulia, K. Osowska, B. Pigulski, T. Lis, Z. Galewski, S. Szafert, Mori–Hiyama versus Hay Coupling for Higher Polyynes, Eur. J. Org. Chem. 25 (2012) 4819-4830.
DOI: 10.1002/ejoc.201200554
Google Scholar