Systematic Evaluation of Hybridization Property and Photo-Crosslinking Ability of Modified Oligonucleotides Containing Benzophenone-Bearing Glycol Nucleoside Analogs

Article Preview

Abstract:

Antigene technology is the one strategy for the artificial regulation of gene expression by the formation of triple structure on triplex forming oligonucleotide (TFO) with dsDNA. For the enhancement of the thermal stability of triplex structure, photo-crosslinking reaction is attractive by the covalent bond formation between TFO and dsDNA. In this paper, we designed the novel TFOs containing benzophenone moiety as a photo-crosslinkable agent. Several types of glycol nucleoside analogs having glycol scaffold and benzophenone residues with different linker length were prepared, and the these were incorporated into TFOs. The thermal stability of triplex and the photo-crosslinking reaction efficiency of TFOs toward dsDNA was systematically evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-62

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Buchini, C.J. Leumann, Recent improvements in antigene technology, Curr. Opin. Chem. Biol. 7 (2003) 717-726.

Google Scholar

[2] D.A. Geselowitz, R.D. Neumann, Quantitation of triple-helix formation using a photo-crosslinkable aryl azide/biotin/oligonucleotide conjugate, Bioconjugate Chem. 6 (1995) 502-506.

DOI: 10.1021/bc00034a021

Google Scholar

[3] B.D. Perkins, T.G. Wensel, K.M. Vasquez, J.H. Wilson, Psoralen photo-cross-linking by triplex-forming oligonucleotides at multiple sites in the human rhodopsin gene, Biochemistry, 38 (1999) 12850-12859.

DOI: 10.1021/bi9902743

Google Scholar

[4] K. Fujimoto, H. Yoshinaga, Y. Yoshio, T. Sakamoto, Quick and reversible photocrosslinking reaction of 3-cyanovinylcarbazole nucleoside in a DNA triplex, Org. Biomol. Chem. 11 (2013) 5065-5068.

DOI: 10.1039/c3ob40915e

Google Scholar

[5] G. Dorman, G.D. Prestwich, Benzophenone photophores in biochemistry, Biochemistry, 33 (1994) 5661–5673.

DOI: 10.1021/bi00185a001

Google Scholar

[6] J. Jakubovska, D. Tauraitė, R. Meškys, A versatile method for the UVA-induced cross-linking of acetophenone-or benzophenone-functionalized DNA, Scientific Rep. 8 (2018) 16484.

DOI: 10.1038/s41598-018-34892-9

Google Scholar

[7] T. Bach, Stereoselective intermolecular [2 + 2]-photocycloaddition reactions and their application in synthesis, Synthesis (1998) 683-703.

DOI: 10.1055/s-1998-2054

Google Scholar

[8] H.S. Lee, R.D. Dimla, P.G. Schultz, Protein–DNA photo-crosslinking with a genetically encoded benzophenone-containing amino acid, Bioorg. Med. Chem. Lett. 19 (2009) 5222-5224.

DOI: 10.1016/j.bmcl.2009.07.011

Google Scholar

[9] L. Zhang, A. Peritz, E. Meggers, A simple glycol nucleic acid, J. Am. Chem. Soc. 127 (2005) 4174-4175.

DOI: 10.1021/ja042564z

Google Scholar

[10] M.K. Schlegel, A.E. Peritz, K. Kittigowittana, L. Zhang, E. Meggers, Duplex formation of the simplified nucleic acid GNA, ChemBioChem 8 (2007) 927-932.

DOI: 10.1002/cbic.200600435

Google Scholar

[11] E. Meggers, L. Zhang, Synthesis and properties of the simplified nucleic acid glycol nucleic acid, Acc. Chem. Res. 43 (2010) 1092-1102.

DOI: 10.1021/ar900292q

Google Scholar

[12] H. Zhou, X. Ma, J. Wang, L. Zhang, Pyrene acetylide nucleotides in GNA: probing duplex formation and sensing of copper(II) ions, Org. Biomol. Chem., 7 (2009) 2297-2302.

DOI: 10.1039/b900167k

Google Scholar

[13] M.K. Schlegel, L. Zhang, N. Paganoa, E. Meggers, Metal-mediated base pairing within the simplified nucleic acid GNA, Org. Biomol. Chem., 7 (2009) 476-482.

DOI: 10.1039/b816142a

Google Scholar

[14] K. Osowska, T. Liz, S. Szafert, Protection/deprotection-free syntheses and structural analysis of (keto-aryl)diynes, Eur. J. Org. Chem., 27 (2008) 4598-4606.

DOI: 10.1002/ejoc.200800350

Google Scholar

[15] K. Nakatani, T. Yoshida, I. Saito, Photochemistry of benzophenone immobilized in a major groove of DNA:  Formation of thermally reversible interstrand cross-link, J. Am. Chem. Soc. 124 (2002) 2118-2119.

DOI: 10.1021/ja017611r

Google Scholar

[16] S. Takehira, Y. Masui, M. Onaka, The Mukaiyama aldol reactions for congested ketones catalyzed by solid acid of tin(IV) ion-exchanged montmorillonite, Chem. Lett, 43 (2014) 498-500.

DOI: 10.1246/cl.131095

Google Scholar

[17] V. Jeso, C. Aquino, X. Cheng, H. Mizoguchi, M. Nakashige, G. C. Micalizio, Synthesis of Angularly Substituted Trans-Fused Hydroindanes by Convergent Coupling of Acyclic Precursors, J. Am. Chem. Soc. 136 (2014) 8209-8212.

DOI: 10.1021/ja504374j

Google Scholar

[18] M. Li, Y. Li, B. Zhao, F. Liang, L.-Y. Jin, Facile and efficient synthesis of 1-haloalkynes via DBU-mediated reaction of terminal alkynes and N-haloimides under mild conditions, RSC Adv. 4 (2014) 30046-30049.

DOI: 10.1039/c4ra04736b

Google Scholar

[19] N. Gulia, K. Osowska, B. Pigulski, T. Lis, Z. Galewski, S. Szafert, Mori–Hiyama versus Hay Coupling for Higher Polyynes, Eur. J. Org. Chem. 25 (2012) 4819-4830.

DOI: 10.1002/ejoc.201200554

Google Scholar