[1]
E. Antolini, Graphene as a new carbon support for low-temperature fuel cell catalysts, Appl. Catal. B Environ. 123–124 (2012) 52–68.
DOI: 10.1016/j.apcatb.2012.04.022
Google Scholar
[2]
B. Y. Xia, Y. Yan, X. Wang, and X. W. Lou, Recent progress on graphene-based hybrid electrocatalysts, Mater. Horizons 1 (2014) 379–399.
DOI: 10.1039/c4mh00040d
Google Scholar
[3]
F. Yang et al., Reduced graphene oxide supported Pd-Cu-Co trimetallic catalyst: synthesis, characterization and methanol electrooxidation properties, J. Energy Chem. 29 (2019) 72–78.
DOI: 10.1016/j.jechem.2018.02.007
Google Scholar
[4]
S. Bong et al., Graphene supported electrocatalysts for methanol oxidation, Electrochem. commun. 12 (2010) 129–131.
Google Scholar
[5]
L. I. Şanli, V. Bayram, B. Yarar, S. Ghobadi, and S. A. Gürsel, Development of graphene supported platinum nanoparticles for polymer electrolyte membrane fuel cells: Effect of support type and impregnation-reduction methods, Int. J. Hydrogen Energy 41 (2016) 3414–3427.
DOI: 10.1016/j.ijhydene.2015.12.166
Google Scholar
[6]
L. Zhao et al., Facile one-pot synthesis of Pt/graphene-TiO2 hybrid catalyst with enhanced methanol electrooxidation performance, J. Power Sources 279 (2015) 210–217.
DOI: 10.1016/j.jpowsour.2015.01.023
Google Scholar
[7]
H. Wang, B. A. Kakade, T. Tamaki, and T. Yamaguchi, Synthesis of 3D graphite oxide-exfoliated carbon nanotube carbon composite and its application as catalyst support for fuel cells, J. Power Sources 260 (2014) 338–348.
DOI: 10.1016/j.jpowsour.2014.03.014
Google Scholar
[8]
D. Parviz, Z. Yu, S. Verkhoturov, M. J. Green, and R. C. Hedden, Gradient films of pristine graphene/pyrene-functional copolymers with Janus electrical properties, ACS Appl. Mater. Interfaces 8 (2016) 31813–31821.
DOI: 10.1021/acsami.6b09646
Google Scholar
[9]
S. P. Economopoulos, G. Rotas, Y. Miyata, H. Shinohara, and N. Tagmatarchis, Exfoliation and Chemical Modification, ACS Nano 4 (2010) 7499–7507 (2010).
DOI: 10.1021/nn101735e
Google Scholar
[10]
S. Themsirimongkon, K. Ounnunkad, and S. Saipanya, Electrocatalytic enhancement of platinum and palladium metal on polydopamine reduced graphene oxide support for alcohol oxidation, J. Colloid Interface Sci. 530 (2018) 98–112.
DOI: 10.1016/j.jcis.2018.06.072
Google Scholar
[11]
A. Pinithchaisakula, S. Themsirimongkon, N. Promsawan, P. Weankeaw, K. Ounnunkad, and S. Saipanya, An Investigation of a Polydopamine-Graphene Oxide Composite as a Support for an Anode Fuel Cell Catalyst, Electrocatalysis 8 (2017) 36–45.
DOI: 10.1007/s12678-016-0338-6
Google Scholar
[12]
K. Qu, Y. Zheng, S. Dai, and S. Z. Qiao, Polydopamine-graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction, Nanoscale 7 (2015) 2598–12605.
DOI: 10.1039/c5nr03089g
Google Scholar
[13]
Y. Noh et al., Exploring the effects of the size of reduced graphene oxide nanosheets for Pt-catalyzed electrode reactions, Nanoscale 7 (2015) 9438–9442.
DOI: 10.1039/c5nr01713k
Google Scholar
[14]
H. Kunitomo, H. Ishitobi, and N. Nakagawa, Optimized CeO2 content of the carbon nanofiber support of PtRu catalyst for direct methanol fuel cells, J. Power Sources 297 (2015) 400–407.
DOI: 10.1016/j.jpowsour.2015.07.002
Google Scholar
[15]
M.-S. Loffler, H. Natter, R. Hempelmann, K. Wippermann, Preparation and characterisation of Pt–Ru model electrodes for the direct methanol fuel cell, Electrochim. Acta 48 (2003) 3047-3051.
DOI: 10.1016/s0013-4686(03)00375-x
Google Scholar