Optical Absorption and Photoluminescence in Defect-Stannite-Type Semiconductor ZnGa2Se4

Article Preview

Abstract:

Optical absorption and photoluminescence (PL) spectra were measured on defect-stannite-type semiconductor ZnGa2Se4 at temperatures T from 11 to 300 K. The square of the absorption coefficient spectra showed distinct two absorption edges, which were E0A,B and E0C,D transitions at Γ point in the Brillouin zone. The temperature dependence of the direct-gap energies, E0A,B and E0C,D, of ZnGa2Se4 were determined and fit using the analytical four-parameter expression developed for the explanation of the band-gap shrinkage effect in semiconductors. The PL emissions at near band-edge and at higher energy than band-edge were also observed at T ≤ 150 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-16

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. N. Georgobiani, S. I. Radautsan, and I. M. Tiginyanu: Sov. Phys. Semicond. Vol. 19, (1985) p.121.

Google Scholar

[2] S. Ozaki and S. Adachi: Phys. Rev. B Vol. 64, (2001) p.085208.

Google Scholar

[3] S. Ozaki, K. Muto, and S. Adachi: J. Phys. Chem. Solids Vol. 64, (2003) p.(1935).

Google Scholar

[4] S. Ozaki, S. Boku, and S. Adachi: Phys. Rev. B Vol. 68, (2003) p.235201.

Google Scholar

[5] S. Ozaki, K. Muto, H. Nagata, and S. Adachi: J. Appl. Phys. Vol. 97, (2005) p.043507.

Google Scholar

[6] M. Sasaki, S. Ozaki, and S. Adachi: Phys. Rev. B Vol. 72, (2005) p.045218.

Google Scholar

[7] Y. Take, S. Ozaki, and S. Adachi: Phys. Rev. B Vol. 76, (2007) p.035202.

Google Scholar

[8] H. Hahn, G. Frank, W. Klingler, A. D. Störger, and G. Störger: Z. Anorg. Allg. Chem. Vol. 279, (1955) p.241.

Google Scholar

[9] O. Madelung, in Landolt−Börnstein: Numerical Data and Functional Relationships in Science and Technology (Springer, Berlin, 1985), Vol. 17h.

Google Scholar

[10] P. A. Gutiérrez, M. C. Morón, S. Hull, and M. L. Sanjuán: J. Phys.: Condens. Matter. Vol. 25, (2013) p.485402.

Google Scholar

[11] T. Hanada, F. Izumi, Y. Nakamura, O. Nittono, Q. Huang, and A. Santoro: Physica B Vol. 241-243, (1997) p.373.

DOI: 10.1016/s0921-4526(97)00592-9

Google Scholar

[12] M. Fadel, I. S. Yahia, G. B. Sakr, F. Yakuphanoglu, and S. S. Shenouda: Opt. Commun. Vol. 285, (2012) p.3154.

Google Scholar

[13] M. G. Brik: J. Phys. Cond. Mat. Vol. 21, (2009) p.485502.

Google Scholar

[14] Y. P. Varshni: Physica (Amsterdam) Vol. 34, (1967) p.149.

Google Scholar

[15] R. Pässler: Phys. Status Solidi B Vol. 200, (1997) p.155.

Google Scholar

[16] R. Pässler: Phys. Status Solidi B Vol. 216, (1999) p.975.

Google Scholar

[17] O. Madelung: Semiconductors: Data Handbook (Springer, Berlin, 2004).

Google Scholar

[18] M. Morocoima, M. Quintero, E. Guerrero, R. Tovar, and P. Conflant: J. Phys. Chem. Solids Vol. 58, (1997) p.503.

Google Scholar

[19] T. Hori and S. Ozaki: J. Appl. Phys. Vol. 113, (2013) p.173516.

Google Scholar

[20] S. Ozaki and S. Adachi: J. Mater. Sci: Mater. Electron Vol. 18, (2007) p.S25.

Google Scholar