Pore Structure of TiO2- Modified ZrO2 Particles Prepared by the Glycothermal Method

Article Preview

Abstract:

Titania-modified zirconias with different Ti/Zr ratios were synthesized via thermal treatment of zirconium (IV) tetra-n-propoxide and titanium (IV) tetra-iso-propoxide in 1,4-butanediol at 300 °C. The obtained products were spherical particles composed of nanocrystals with the tetragonal ZrO2 structure. The products had large specific surface areas, large pore volumes, and relatively narrow pore size distributions in the mesopore region. After calcination at high temperatures, the obtained TiO2-modified ZrO2 samples preserved large surface areas and pore structure. Having these superior thermal stability and pore structure, the obtained TiO2-modified ZrO2 particles are expected to show high performance as catalytic materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-22

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Yoshimura, Ceram. Bull. 67 (1988) 1950–(1955).

Google Scholar

[2] M. M. Nasrallah, D. L. Douglass, J. Electrochem. Soc. 121 (1974) 255–262.

Google Scholar

[3] T. Funamoto, T. Nakagawa, K. Segawa, Appl. Catal. A 286 (2005) 79–84.

Google Scholar

[4] N. Kamoun, M. K. Younes, A. Ghorbel, A. S. Mamede, A. Rives, React. Kinet. Mech. Cat. 111 (2014) 199–213.

DOI: 10.1007/s11144-013-0638-2

Google Scholar

[5] T. M. Lima, C. A. Pereira, W. N. Castelblanco, C. M. B. Santos, S. W. da Silva, R. C. Santana, E. A. Urquieta-González, P. P. C. Sartoratto, ChemistrySelect 2 (2017) 11565–11573.

DOI: 10.1002/slct.201702475

Google Scholar

[6] S. Kurasawa, S. Iwamoto, M. Inoue, Mol. Cryst. Liq. Cryst. 387 (2002) 347–352.

Google Scholar

[7] Y. Nagayasu, A. Nakayama, S. Kurasawa, S. Iwamoto, E. Yagasaki, M. Inoue, J. Jpn. Petrol. Inst. 48 (2005) 301–307.

DOI: 10.1627/jpi.48.301

Google Scholar

[8] M. Z.-C. Hu, R. D. Hunt, E. A. Payzant, C. R. Hubbard, J. Am. Ceram. Soc. 82 (1999) 2313–2320.

Google Scholar

[9] S. Melada, M. Signoretto, F. Somma, F. Pinna, G. Cerrato, G. Meligrana, C. Morterra, Catal. Lett. 94 (2004) 193–198.

DOI: 10.1023/b:catl.0000020545.04726.e2

Google Scholar

[10] H. Nishizawa, N. Yamasaki, K. Matsuoka, H. Mitsushio, J. Am. Ceram. Soc. 65 (1982) 343–346.

Google Scholar

[11] M. Inoue, H. Kominami, T. Inui, Res. Chem. Intermed. 24 (1998) 571–579.

Google Scholar

[12] S. Hosokawa, S. Iwamoto, M. Inoue, J. Alloys Compd. 457 (2008) 510–516.

Google Scholar

[13] S. Iwamoto, M. Inoue, J. Jpn. Petrol. Inst. 51 (2008) 143–156.

Google Scholar

[14] M. Inoue, H. Kominami, T. Inui, Appl. Catal. A 97 (1993) L25–L30.

Google Scholar

[15] S. Kongwudthiti, P. Praserthdam, P. Silveston, M. Inoue, Ceram. Intern. 29 (2003) 807–814.

Google Scholar

[16] Q. Xu, M. A. Anderson, J. Am. Ceram. Soc. 76 (1993) 2093–(2097).

Google Scholar

[17] H. Zou, Y. S. Lin, Appl. Catal. A 265 (2004) 35–42.

Google Scholar

[18] J. Fung, I. Wang, J. Catal. 130 (1991) 577–587.

Google Scholar

[19] K. Tanabe, T. Yamaguchi, Catal. Today 20 (1994) 185–198.

Google Scholar

[20] M. E. Manriquez, T. López, R. Gómeza, J. Navarrete, J. Mol. Catal. A: Chemical 220 (2004) 229–237.

Google Scholar

[21] K. Kubo, S. Hosokawa, S. Furukawa, S. Iwamoto, M. Inoue, J. Mater. Sci. 43 (2008) 2198–2205.

Google Scholar

[22] S. Storck, H. Bretinger, W. F. Maier, Appl. Catal. A 174 (1998) 137–146.

Google Scholar