Growth of Ga2O3 Nanowires by a Vapor Transport Method and their Optical Transmittance Spectra

Article Preview

Abstract:

Gallium oxide (Ga2O3) nanowires were grown on fused quartz and Si substrates by a vapor transport method of heating gallium metal at 750−1100 °C in a tube of the horizontal furnace. The obtained white colored product has shown to be the Ga2O3 nanowires with average diameters ranging from 30 to 80 nm. The optical transmittance spectra indicated that the bandgap energy of Ga2O3 nanowire increases as the diameter of nanowire decreases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Yao and S. K. Hong: Oxide and nitride semiconductors: processing, properties, and applications (Springer, Berlin, 2009).

Google Scholar

[2] S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro: Appl. Phys. Rev. Vol. 5, (2018) p.011301.

Google Scholar

[3] Z. Galazka: Semicond. Sci. Technol. Vol. 33, (2018) p.113001.

Google Scholar

[4] O. Madelung: Semiconductors: Data Handbook (Springer, Berlin, 2004).

Google Scholar

[5] T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki: Appl. Phys. Lett. Vol. 108, (2016) p.101904.

DOI: 10.1063/1.4943175

Google Scholar

[6] M. Meyyappan and M. Sunkara: Inorganic Nanowires: Applications, Properties, and Characterization (CRC Press, New York, 2010).

Google Scholar

[7] S. Kumar, C. Tessarek, S. Christiansen, and R. Singh: J. Alloys Comp. Vol. 587, (2014) p.812.

Google Scholar

[8] M. Kumar, V. Kumar, and R. Singh: Nonoscale Res. Lett. Vol. 12, (2017) p.184.

Google Scholar

[9] M. Higashiwaki and G. H. Jessen: Appl. Phys. Lett. Vol. 112, (2018) p.060401.

Google Scholar

[10] S. Ozaki, T. Tsuchiya, Y. Inokuchi, and S. Adachi: Physica Status Solidi A Vol. 202, (2005) p.1325.

Google Scholar

[11] Y. Hakamada and S. Ozaki: Key Engineering Materials Vol. 534, (2013) p.141.

Google Scholar

[12] S. Ozaki and K. Morozumi: Key Engineering Materials Vol. 596, (2014) p.121.

Google Scholar

[13] S. Ozaki and K. Matsumoto: Key Engineering Materials Vol. 790, (2018) p.55.

Google Scholar

[14] A. Mock, J. VanDerslice, R. Korlacki, J. A. Woollam, and M. Schubert: Appl. Phys. Lett. Vol. 112, (2018) p.041905.

Google Scholar

[15] R. Pässler: Phys. Status Solidi B Vol. 200, (1997) p.155.

Google Scholar

[16] R. Pässler: Phys. Status Solidi B Vol. 216, (1999) p.975.

Google Scholar

[17] C. L. Santos and P. Piquini: Phys. Rev. B Vol. 81, (2010) p.075408.

Google Scholar