[1]
Sundaram, R.; Dakappagari, N.K.; Kaumaya, P.T.P. Synthetic peptides as cancer vaccines. Biopolymers (Peptide Science) 66 (2002) 200-216.
DOI: 10.1002/bip.10258
Google Scholar
[2]
Aina, O.H.; Sroka, T.C.; Chen, M.-L.; Lam, K.S. Therapeutic cancer targeting peptides. Biopolymers (Peptide Science) 66 (2002) 184-199.
DOI: 10.1002/bip.10257
Google Scholar
[3]
(a) Villen, J.; Borras, E.; Schaaper, W.M.M.; Meloen, R.H.; Davila, M.; Domingo, E.; Giralt, E.; Andreu, D. Functional mimicry of a discontinuous antigenic site by a designed synthetic peptide. Chembiochem 3 (2002) 175-182. (b) Villen, J.; Borras, E.; Schaaper, W.M.M.; Meloen, R.H.; Davila, M.; Domingo, E.; Giralt, E.; Andreu, D. Synthetic peptides as functional mimics of a viral discontinuous antigenic sites. Biologicals 29 (2001) 265-269.
DOI: 10.1006/biol.2001.0310
Google Scholar
[4]
Borras, E.; Giralt, E.; Andreu, D. A rationally Designed Synthetic peptide mimic of a discontinuous viral antigenic site elicits neutralizing antibodies. J. Am. Chem. Soc. 121 (1999) 11932-11933.
DOI: 10.1021/ja9917722
Google Scholar
[5]
(a) Roth, E.F.,Jr.; Calvin, M.-C., Jr.; Max-Audit, I.; Rosa, J.; Rosa, R. The enzymes of the glycolytic pathway in erythrocytes infected with Plasmodium falciparum malaria parasites. Blood 72 (1988) 1922-1925. (b) Roth, E., Jr. Plasmodium falciparum carbohydrate metabolism: a connection between host cell and parasite. Blood Cells 16 (1990) 453-60.
DOI: 10.1182/blood.v72.6.1922.bloodjournal7261922
Google Scholar
[6]
Read, M.; Hicks, K.E.; Sims, P.F.; Hyde, J.E. Molecular characterization of the enolase gene from the human malaria parasite Plasmodium falciparum. Evidence for ancestry within a photosynthetic lineage. Eur. J. Biochem. 220 (1994) 513-520.
DOI: 10.1111/j.1432-1033.1994.tb18650.x
Google Scholar
[7]
(a) Kano, S.; El Gaddal, A.A.; Suzuki, M. Clinical and epidemiological studies on a 47kD Plasmodium falciparum antigen. Jpn. J. Trop. Med. Hyg. 18 (1990) 317-324. (b) Norazmi, M.K.; Kano, S.; Alias, A.; Abdullah, M.S.; Suzuki, M. Reactivity of sera from patients with acute Plasmodium falciparum and P. vivax infections with an antigen Preparation from a P. falciparum isolate: mutually exclusive reactivity with a 47kD and 29 kD band respectively. Jpn. J. Trop. Med. Hyg. 24 (1996) 237-239. (c) Tongol-Rivera, P.; Kano, S.; Canete-Miguel, E.; Suzuki, M.; A 23kD Molecule of Plasmodium falciparum Binds Specific IgG from Splenomegalic, Parasitic, but Asymptomatic Children -A Pilot Study in a Malarious Community in Palawan, the Philippines. Jpn. J. Trop. Med. Hyg. 25 (1997) 1-5. (d) Kano, S.; Onda, T.; Matsumoto, Y.; Buchachart, K.; Krudsood, S.; Looareesuwan, S.A.; Mamoru, S. Serological evaluation of malaria patients in Thailand: antibody response against electrophoresed antigenic polypeptides of Plasmodium falciparum. Southeast Asian J. Trop. Med. Public Health. 29 (1998) 341-343.
Google Scholar
[8]
Sato, K.; Kano, S.; Matsumoto, Y.; Glanarongran, R.; Krudsood, S.; Looareesuwan, S.; Aikawa, M.; Suzuki, M. Application of yeast enolase as antigen for immunodiagnosis of malaria. Southeast Asian J Trop Med Public Health 31 (2000) 79-84.
Google Scholar
[9]
(a) Kano, S.; Oku, H.; Katakai, R.; Sato, K.; Kawazu, S.; Miyamoto, K.; Looareesuwan, S.; Aikawa, M.; Suzuki, M. (1999) Molecular Design of Synthetic Peptides of Plasmodium Falciparum Enolase and Their Reactivity Against Patients' Sera. Parasitology International 48, 169 (Supplement Issue). (b) Nonaka, R.; Oku, H.; Sato, K.; Kano, S.; Suzuki, M.; Katakai, R. Synthesis of small domain peptides of glycolytic enzyme enolase. In Peptide Scienece 2000"; T. Shioiri, Ed.; The Japanese Peptide Society: Osaka, 2001; pp.301-304.
DOI: 10.1016/s1383-5769(98)80704-6
Google Scholar
[10]
(a) Oku, H.; Yano, K.; Fukumoto, M.; Fukuno, M.; Iwasaki, A.; Yamada, K.; Hasegawa, S.; Maekawa, Y.; Sato, K.; Kano, S. Detection of malaria antibody using peptide antigen immobilized nano-spheres. In Peptide Scienece 2011"; K. Sakaguchi Ed.; The Japanese Peptide Society: Osaka, pp.331-334.
Google Scholar
[11]
Masuko, K.; Wakita, D.; Togashi, Y.; Kita, T.; Kitamura, H.; Nishimura, T. Artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP): Preparation and immunological analysis of vaccine efficacy, Immunology Letters 163 (2015), 102–112.
DOI: 10.1016/j.imlet.2014.11.016
Google Scholar
[12]
Fields, G.B.; Noble, R.L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res. 35 (1990) 161-214.
DOI: 10.1111/j.1399-3011.1990.tb00939.x
Google Scholar
[13]
(a) RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386 (2015) 31-45. (b) Dobaño, C.; Sanz, H.; Sorgho, H.; Dosoo, D.; Mpina, M.; Ubillos, I. et al. Concentration and avidity of antibodies to different circumsporozoite epitopes correlate with RTS,S/AS01E malaria vaccine efficacy. Nat Commun. 10 (2019) 2174.
DOI: 10.1016/s0140-6736(15)60721-8
Google Scholar
[14]
Information on https://www.ema.europa.eu/en/mosquirix-h-w-2300.
Google Scholar