Electron Density and Effective Atomic Number Measurement by Using a Newly Developing Photon Counting CT System

Article Preview

Abstract:

We developed the photon counting CT system by using a conventional laboratory X-ray source and a CdTe line sensor. Attenuation coefficients were obtained from the measured CT image data. Our suggested method for deriving the electron density and effective atomic number from the measured attenuation coefficients was tested experimentally. The accuracy of the electron densities and effective atomic numbers are about <5 % (the averages of absolute values are 2.6 % and 3.1 %, respectively) for material of 6< Z and Zeff <13. Our suggested simple method, in which we do not need the exact source X-ray spectrum and detector response function, achieves comparable accuracy to the previous reports.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-99

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Patino, A. Prokowski, M. D. Agrawal, F. J. Simon, R. Guputa, P. F. Hahn and D. V. Sahani, Material Separation Using Dual-Energy CT: Current and Emerging Applications, Radiographics 36, 1087-1105 (2016).

DOI: 10.1148/rg.2016150220

Google Scholar

[2] G. Hidas, R. Eliahou, M. Duvdevani, P. Coulon, L. Lemaitre, O. N. Gofrit, D. Pode and J. Sosna, Determination of Renal stone composition with dual-energy CT: In Vivo analysis and comparison with X-ray diffraction, Radiology 257, 394-401 (2010).

DOI: 10.1148/radiol.10100249

Google Scholar

[3] Y. Nishizawa, C. Higuchi, T. Nakaoka, H. Omori, T. Ogawa, H. Sakura and K. Nitta, Compositional analysisof coronary artery calcificationin dialysis patient in vivo by dual-energy computed tomography angiography, Ther. Aper. Dial. 22, 365-379 (2018).

DOI: 10.1111/1744-9987.12662

Google Scholar

[4] N. Hunemohr, B. Krauss, C. Tremmel, B. Ackermann, O. Jakel and S. Greilich, Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates, Phys. Med. Biol. 59 (2014) 83-96.

DOI: 10.1088/0031-9155/59/1/83

Google Scholar

[5] W. Zou, T. Nakashima, Y. Onishi, A. Koike, B. Shinomiya, H. Morii, Y. Neo, H. Mimura and T. Aoki, Atomic number and electron density measurement using conventional X-ray tube and a CdTe detector, Jpn. J. Appl. Phys. 47 (2008) 7317-7323.

DOI: 10.1143/jjap.47.7317

Google Scholar

[6] M. Torikoshi, T. Tsunoo, M. Sakaki, M. Endo, Y. Noda, Y. Ohno, T. Kohno, K. Hyodo, K. Uesugi and N. Yagi, Electron density measurement with dual-energy X-ray CT using synchrotron radiation, Phys. Med. Biol. 48 (2003) 673-685.

DOI: 10.1088/0031-9155/48/5/308

Google Scholar

[7] S. G. Azevedo, H. E. Martz, Jr., M. B. Aufderheide, III, W. D. Brown, K. M. Champley, J. S. Kallman, G. P. Roberson, D. Schneberk, I. M. Seetho and J. A. Smith, System-independent characterization of materials using dual-energy computed tomography, IEEE Trans. Nucl. Sci. 63, 341-350 (2016).

DOI: 10.1109/tns.2016.2514364

Google Scholar

[8] K. M. Champley, S. G. Azevedo, I. M. Seetho, S. M. Glenn, L. D. McMichael, J. A. Smith, J. S. Kallman and W. D. Brown, Method to extract sistem-independent material properties from dual-energy X-ray CT, IEEE Trans. Nucl. Sci. 66, 674-686 (2019).

DOI: 10.1109/tns.2019.2898386

Google Scholar

[9] M. Busi, K. A. Mohan, A. A. Dooraghi, K. M. Champley and H. E. Martz, Method for system independent material characterization from spectral X-ray CT, NDT & E Int. 107, 102136 (2019).

DOI: 10.1016/j.ndteint.2019.102136

Google Scholar

[10] A. Nagao, T. Yamazaki, M. Torikoshi, N. Sunaguchi, T. Kanai, T. Hayashi, K. Suzuki1e, K. Hoshi and H. Sakurai, Electron density measurement using multi-energy X-rays from a conventional laboratory X-ray source, Appl. Mech. Mat. 888, 83-88 (2019).

DOI: 10.4028/www.scientific.net/amm.888.83

Google Scholar

[11] D. F. Jackson and D. J. Hawkes, X-ray attenuation coefficients of elements and mixtures, Phys. Rep. 70 (1981) 169-233.

DOI: 10.1016/0370-1573(81)90014-4

Google Scholar

[12] M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen (2010), XCOM: Photon Cross Section Database (version 1.5). [Online] Available: http://physics.nist.gov/xcom [2020, February 28]. National Institute of Standards and Technology, Gaithersburg, MD.

Google Scholar