Two Elements Orthogonally Placed UWB-MIMO for RADAR, Satellite and Terrestrial Communications

Article Preview

Abstract:

In this paper, a novel approach to design a compact ultrawideband (UWB) Multi-Input-Multi-Output (MIMO) antenna is presented. The proposed design consists of two elliptical monopoles placed orthogonal to each other for mutual coupling reduction. The design is integrated with three parallel coupled line strips for further mutual coupling reduction between the antenna elements. The physical dimension of the proposed design is 35 x 35 x 1.6 mm designed in low cost FR-4 substrate resulting in UWB characteristics in the WLAN range. The proposed design demonstrates good performance in the frequency range of 4.66 GHz to 12.42 GHz having large bandwidth of 7.76 GHz, with a mutual coupling of better than-20 dB in the entire band. The diversity performance, as measured by the correlation coefficient (ECC) and diversity gain (DG), is excellent, and within the acceptable range which proves that the proposed compact UWB MIMO antenna is a suitable candidate for RADAR, Satellite and Terrestrial Communications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-99

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. T. Leung, On Maxwell's discovery of electromagnetic waves and the gauge condition, Eur J Phys, vol. 36, no. 2, (2015).

DOI: 10.1088/0143-0807/36/2/025002

Google Scholar

[2] J. A. Del Peral-Rosado, R. Raulefs, J. A. López-Salcedo, and G. Seco-Granados, Survey of Cellular Mobile Radio Localization Methods: From 1G to 5G, IEEE Communications Surveys and Tutorials, vol. 20, no. 2. (2018).

DOI: 10.1109/COMST.2017.2785181

Google Scholar

[3] S. Z. Asif, Next Generation Mobile Communications Ecosystem: Technology Management for Mobile Communications. (2010).

DOI: 10.1002/9780470972182

Google Scholar

[4] P. Richardson, L. Sieh, and A. Ganz, Quality of service support for multimedia applications in third generation mobile networks using adaptive scheduling, Real-Time Systems, vol. 21, no. 3, (2001).

DOI: 10.1023/A:1011184205136

Google Scholar

[5] N. Misran, M. T. Islam, and N. K. Jiunn, Design and development of broadband inverted e-shaped patch microstrip array antenna for 3G wireless network, Am J Appl Sci, vol. 5, no. 4, (2008).

DOI: 10.3844/ajassp.2008.427.434

Google Scholar

[6] A. Elsanousi and S. Oztürk, Performance Analysis of OFDM and OFDM-MIMO Systems under Fading Channels, Engineering, Technology & Applied Science Research, vol. 8, no. 4, (2018).

DOI: 10.48084/etasr.2209

Google Scholar

[7] M. Asadullah, M. A. Khan, S. Abbas, T. Alyas, M. A. Saleem, and A. Fatima, Blind channel and data estimation using fuzzy logic empowered cognitive and social information-based particle swarm optimization (PSO), International Journal of Computational Intelligence Systems, vol. 13, no. 1, (2020).

DOI: 10.2991/ijcis.d.200323.002

Google Scholar

[8] F. C. Commission, First report and order in the matter of revision of part 15 of the commission's rules regarding ultrawideband transmission systems, Washington, DC, USA, no. 190211614895, (2002).

Google Scholar

[9] T. K. K. Tsang and M. N. El-Gamal, Ultra-wideband (UWB) communications systems: An overview, in 3rd International IEEE Northeast Workshop on Circuits and Systems Conference, NEWCAS 2005, (2005).

DOI: 10.1109/NEWCAS.2005.1496688

Google Scholar

[10] K. Mahender, T. Kumar, and K. Ramesh, Analysis of multipath channel fading techniques in wireless communication systems, in AIP Conference Proceedings, p.20050, (2018).

DOI: 10.1063/1.5032012

Google Scholar

[11] T. Kaiser, F. Zheng, and E. Dimitrov, An Overview of Ultra-Wide-Band Systems With MIMO, Proceedings of the IEEE, vol. 97, no. 2, p.285–312, (2009).

DOI: 10.1109/JPROC.2008.2008784

Google Scholar

[12] Q.-Y. Zeng, X. Zhang, L. Zhu, Q.-S. Wu, and T. Yuan, Decoupling of Antenna Pairs Based on Equal Modal Conductance by Antenna-Shape Modification, IEEE Trans Antennas Propag, vol. 71, no. 3, p.2182–2193, (2023).

DOI: 10.1109/TAP.2023.3235013

Google Scholar

[13] M. Saito, Antenna Pattern Multiplexing for Enhancing Path Diversity, in Advances in Array Optimization, (2020).

DOI: 10.5772/intechopen.89098

Google Scholar

[14] H.-D. Chen, J.-N. Li, and Y.-F. Huang, Band-notched ultra-wideband square slot antenna, Microw Opt Technol Lett, vol. 48, no. 12, p.2427–2429, (2006).

DOI: 10.1002/mop.21966

Google Scholar

[15] J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, Study of a printed circular disc monopole antenna for UWB systems, IEEE Trans Antennas Propag, vol. 53, no. 11, p.3500–3504, (2005).

DOI: 10.1109/TAP.2005.858598

Google Scholar

[16] L. A. Griffiths, C. Furse, and Y. C. Chung, Broadband and Multiband Antenna Design Using the Genetic Algorithm to Create Amorphous Shapes Using Ellipses, IEEE Trans Antennas Propag, vol. 54, no. 10, p.2776–2782, (2006).

DOI: 10.1109/TAP.2006.882154

Google Scholar

[17] T. Karacolak and E. Topsakal, A Double-Sided Rounded Bow-Tie Antenna (DSRBA) for UWB Communication, IEEE Antennas Wirel Propag Lett, vol. 5, p.446–449, (2006).

DOI: 10.1109/LAWP.2006.885013

Google Scholar

[18] Z. N. Chen, M. J. Ammann, X. Qing, X. H. Wu, T. S. P. See, and A. Cai, Planar antennas, IEEE Microw Mag, vol. 7, no. 6, p.63–73, (2006).

DOI: 10.1109/MW-M.2006.250315

Google Scholar

[19] H. Alsariera, Z. Zakaria, and A. Awang Md Isa, A Broadband P-Shaped Circularly Polarized Monopole Antenna With a Single Parasitic Strip, IEEE Antennas Wirel Propag Lett, vol. 18, no. 10, p.2194–2198, (2019).

DOI: 10.1109/LAWP.2019.2940160

Google Scholar

[20] N. Sharma and S. Bhatia, Stubs and Slits Loaded Partial Ground Plane Inspired Hexagonal Ring-Shaped Fractal Antenna for Multiband Wireless Applications: Design and Measurement, Progress In Electromagnetics Research C, vol. 112, p.99–111,(2021).

DOI: 10.2528/PIERC21040601

Google Scholar

[21] A. R. H. Alhawari, A. H. M. Almawgani, A. T. Hindi, H. Alghamdi, and T. Saeidi, Metamaterial-based wearable flexible elliptical UWB antenna for WBAN and breast imaging applications, AIP Adv, vol. 11, no. 1, p.015128,(2021).

DOI: 10.1063/5.0037232

Google Scholar

[22] S. Ahmad et al., A Jug-Shaped CPW-Fed Ultra-Wideband Printed Monopole Antenna for Wireless Communications Networks, Applied Sciences, vol. 12, no. 2, p.821, (2022).

DOI: 10.3390/app12020821

Google Scholar

[23] M. Yassin, H. Mohamed, E. Abdallah, and H. El-Hennawy, Semi-Circular Stubs UWB Monopole Antenna with Tunable Dual Band-Notch Characteristics, International Journal of Microwave and Optical Technology, vol. 15, p.169–177, (2022).

Google Scholar

[24] A. S. Gvozdarev, A. M. Alishchuk, and M. A. Kazakova, Closed-Form Capacity Reliability Analysis of Multiuser MIMO System in the Presence of Generalized Multipath Fading, Sensors, vol. 23, no. 4, p.2289, (2023).

DOI: 10.3390/s23042289

Google Scholar

[25] J. Kulkarni, T.-Y. Han, J.-S. Row, and C.-Y.-D. Sim, Multiband 4-Port DGS MIMO Antenna with DR Isolating Element for Wireless Applications, in 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), dgs structure  low isolation, Ed., IEEE, Dec. p.1021–1022.(2021).

DOI: 10.1109/APS/URSI47566.2021.9704610

Google Scholar

[26] A. A. Palsokar and S. L. Lahudkar, Frequency and pattern reconfigurable rectangular patch antenna using single PIN diode, AEU - International Journal of Electronics and Communications, vol. 125, (2020).

DOI: 10.1016/j.aeue.2020.153370

Google Scholar

[27] J.-S. Row and T.-H. Ko, A wideband monopole antenna with ring-shaped ground plane: ROW and KO, Microw Opt Technol Lett, vol. 59, p.2375–2381,(2017).

DOI: 10.1002/mop.30742

Google Scholar

[28] K. Kaboutari and V. Hosseini, A compact 4-element printed planar MIMO antenna system with isolation enhancement for ISM band operation, AEU - International Journal of Electronics and Communications, vol. 134, (2021).

DOI: 10.1016/j.aeue.2021.153687

Google Scholar

[29] R. Mark, H. V. Singh, K. Mandal, and S. Das, Reduced edge-to-edge spaced MIMO antenna using parallel coupled line resonator for WLAN applications, Microw Opt Technol Lett, vol. 61, no. 10, (2019).

DOI: 10.1002/mop.31911

Google Scholar

[30] T. Jiao, T. Jiang, and Y. Li, A low mutual coupling MIMO antenna using 3-D electromagnetic isolation wall structures, in 2017 IEEE 6th Asia-Pacific Conference on Antennas and Propagation, APCAP 2017 - Proceeding, (2018).

DOI: 10.1109/APCAP.2017.8420496

Google Scholar

[31] T. Hassan, M. U. Khan, H. Attia, and M. S. Sharawi, An FSS Based Correlation Reduction Technique for MIMO Antennas, IEEE Trans Antennas Propag, vol. 66, no. 9, (2018).

DOI: 10.1109/TAP.2018.2842256

Google Scholar

[32] R. Mark, N. Rajak, K. Mandal, and S. Das, Metamaterial based superstrate towards the isolation and gain enhancement of MIMO antenna for WLAN application, AEU - International Journal of Electronics and Communications, vol. 100, (2019).

DOI: 10.1016/j.aeue.2019.01.011

Google Scholar

[33] X. Tan, W. Wang, Y. Li, A. A. Kishk, B. Tang, and Y. Liu, Isolation enhancement in planar multiple antenna by using split miniaturized-EBG structure, International Journal of RF and Microwave Computer-Aided Engineering, vol. 32, no. 3, (2022).

DOI: 10.1002/mmce.23027

Google Scholar

[34] S. S. Jehangir and M. S. Sharawi, A Miniaturized UWB Biplanar Yagi-Like MIMO Antenna System, IEEE Antennas Wirel Propag Lett, vol. 16, p.2320–2323, (2017).

DOI: 10.1109/LAWP.2017.2716963

Google Scholar

[35] M. Anbarasu and J. Nithiyanantham, Performance Analysis of Highly Efficient Two-Port MIMO Antenna for 5G Wearable Applications, IETE J Res, (2021).

DOI: 10.1080/03772063.2021.1926345

Google Scholar

[36] G. Bharti, D. Kumar, A. K. Gautam, and A. Sharma, Two-port ring-shaped dielectric resonator-based diversity radiator with dual-band and dual-polarized features, Microw Opt Technol Lett, vol. 62, no. 2, (2020).

DOI: 10.1002/mop.32053

Google Scholar

[37] Y. Dou, Z. Chen, J. Bai, Q. Cai, and G. Liu, Two-port CPW-fed dualband MIMO antenna for IEEE 802.11 a/b/g applications,'' Int. J. Antennas Propag., vol. 2021, p.1–8, (2021).

DOI: 10.1155/2021/5572887

Google Scholar

[38] R. N. Tiwari, P. Singh, S. Pandey, R. Anand, D. K. Singh, and B. K. Kanaujia, Swastika shaped slot embedded two port dual frequency band MIMO antenna for wireless applications, Analog Integr Circuits Signal Process, vol. 109, no. 1, (2021).

DOI: 10.1007/s10470-021-01923-x

Google Scholar

[39] C. Y. D. Sim, V. Dhasarathan, T. K. Tran, J. Kulkarni, B. A. Garner, and Y. Li, Mutual Coupling Reduction in Dual-Band MIMO Antenna Using Parasitic Dollar-Shaped Structure for Modern Wireless Communication, IEEE Access, vol. 11, (2023).

DOI: 10.1109/ACCESS.2023.3235761

Google Scholar

[40] J. Kulkarni, A. Desai, and C. Y. D. Sim, Two port CPW-fed MIMO antenna with wide bandwidth and high isolation for future wireless applications, International Journal of RF and Microwave Computer-Aided Engineering, vol. 31, no. 8, (2021).

DOI: 10.1002/mmce.22700

Google Scholar

[41] G. Varshney, R. Singh, V. S. Pandey, and R. S. Yaduvanshi, Circularly polarized two-port MIMO dielectric resonator antenna, Progress In Electromagnetics Research M, vol. 91, (2020).

DOI: 10.2528/pierm20011003

Google Scholar

[42] S. S. Singhwal, B. K. Kanaujia, A. Singh, and J. Kishor, Dual-port MIMO dielectric resonator antenna for WLAN applications, International Journal of RF and Microwave Computer-Aided Engineering, vol. 30, no. 4, (2020).

DOI: 10.1002/mmce.22108

Google Scholar

[43] T. Kumari, G. Das, R. K. Gangwar, and K. K. Suman, Dielectric resonator based two-port dual band antenna for MIMO applications, International Journal of RF and Microwave Computer-Aided Engineering, vol. 29, no. 12, (2019).

DOI: 10.1002/mmce.21985

Google Scholar

[44] Davidson, David B., Computational Electromagnetics Simulation Software for RF and Microwave, Computer Simulation Technology Studio Suite,Version 2018,(2016), https://www.3ds.com/products-services/simulia/products/cst-studio-suite/.

Google Scholar

[45] R. Sridhar and V. Patteeswaran, Defected Ground Structure Multiple Input-Output Antenna For Wireless Applications, Computer Systems Science and Engineering, vol. 46, no. 2, p.2109–2122, (2023).

DOI: 10.32604/csse.2023.036781

Google Scholar

[46] M. Sharawi, Printed Multi-Band MIMO Antenna Systems and Their Performance Metrics [Wireless Corner], IEEE Antennas Propag Mag, vol. 55, p.218, (2013).

DOI: 10.1109/MAP.2013.6735522

Google Scholar

[47] M. A. Abbas, A. Allam, A. Gaafar, H. M. Elhennawy, and M. F. A. Sree, Compact UWB MIMO Antenna for 5G Millimeter-Wave Applications, Sensors, vol. 23, no. 5, p.2702, (2023).

DOI: 10.3390/s23052702

Google Scholar

[48] S. Mishra, S. Das, S. S. Pattnaik, S. Kumar, and B. K. Kanaujia, Three-dimensional dual-band dielectric resonator antenna for wireless communication, IEEE Access, vol. 8, (2020).

DOI: 10.1109/ACCESS.2020.2987950

Google Scholar